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Abstract—This paper presents a novel method for pedestrian
detection and distance estimation using RGB-D data. We use
Mask R-CNN for instance-level pedestrian segmentation, and the
Semiglobal Matching algorithm for computing depth information
from a pair of infrared images captured by an Intel RealSense
D435 stereo vision depth camera. The resulting depth map is post-
processed using both spatial and temporal edge-preserving filters
and spatial hole-filling to mitigate erroneous or missing depth
values. The distance to each pedestrian is estimated using the
median depth value of the pixels in the depth map covered by the
predicted mask. Unlike previous work, our method is evaluated
on, and performs well across, a wide spectrum of outdoor lighting
conditions. Our proposed technique is able to detect and estimate
the distance of pedestrians within Sm with an average accuracy
of 87.7%.

I. INTRODUCTION

In 2017, there were 39 pedestrian fatalities and 281 serious
injuries as a result of vehicle-related accidents in New Zealand
alone [1]. Furthermore, there were 243 workplace fatalities
in New Zealand between 2010 and 2018 which were related
to vehicles and machinery [2]. In total over 50% of all
workplace fatalities over the same period were vehicle or
machinery related [2]. These statistics highlight the need for
increased safety measures for vehicles and machines operating
in proximity to humans.

The safety envelope metaphor is used to describe the margin
around a machine which should be free from obstructions,
and more importantly humans, for safe operation. Though
the responsibility has traditionally fallen to the operator to
ensure that this margin is respected, as machines become more
aware of their surroundings and become more autonomous this
responsibility is shifting to the machine. Take for example a
situation involving a pedestrian and an autonomous vehicle.
While the pedestrian shares the responsibility to maintain a
safe distance, the vehicle, just as a human driver would have,
has a responsibility to be aware of pedestrians in its proximity
and behave appropriately. Detecting the proximity of humans
is not only beneficial for autonomous machines, but also for
assisting human operators of machines, similar to reversing
cameras and existing proximity sensors.

To improve safety around vehicles and machines, we pro-
pose a method for detecting and monitoring the distance of
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Fig. 1.
pedestrians identified with individual distance estimates.

An example output from our proposed method, showing multiple

humans from a machine within a narrow safety envelope
using an RGB-D camera. Our approach uses human instance
segmentation and stereo vision to achieve this. The final output
of our method is shown in Fig. 1.

This paper is structured as follows: Section II gives a brief
overview of the current methods for combined pedestrian de-
tection and distance estimation and discusses their limitations.
Sections IIT and IV detail our proposed approach, experimental
results and the limitations of our method. Finally, Section V
concludes the paper and includes a discussion on future work.

II. RELATED WORK

Most of the research surrounding automated or assistive
pedestrian safety systems has focused on pedestrian detection,
a specialisation of object detection. The task for pedestrian
detection is to identifying pedestrians, or more generally
people, in images using bounding boxes. For this task, neural
networks have been used extensively, thanks to the availability
of large amounts of data and annotated images. Commonly
used datasets for training and testing include the CalTech
Pedestrian [3], KITTI [4] and CityPersons [5] datasets. Zhang
et al.’s recently published review on pedestrian detection [6]
provides a thorough examination of different methods, the
current state of the art, and how far we are away from
achieving human-level performance.



Despite the high level of research activity in pedestrian
detection, research beyond pure detection or segmentation
has received less attention. However, the availability and
affordability of RGB-D cameras (such as the Microsoft Kinect
and Intel RealSense devices) has led some researchers to
exploring the use of RGB-D data for detecting and measuring
the distances to pedestrians.

Xi, Chen and Aggarwal [7] used the depth map generated
by a Microsoft Kinect camera to segment humans from
their surroundings. Their approach uses template matching to
identify human heads, followed by a region growing algorithm
to obtain whole body contours. Though there method achieves
a 98.4% detection accuracy in indoor lighting conditions, their
approach has several limitations. First, if a person’s head is
occluded, their method is unable to detect them because of
the importance placed on head detection. Second, their method
was only evaluated in indoor lighting conditions and unlikely
to be robust to interference caused by outdoor lighting. If
patchy or noisy depth values are present, a head may not be
able to be identified, or the region growing algorithm may
not be able to extract a whole body contour. The limitations
of the Kinect sensor in outdoor lighting conditions are well
documented, depth estimation is severely hampered by sun-
light because of interfering infrared light [8]. Xi, Chen and
Aggarwal [7] do not report on the accuracy of their depth
estimates.

Similarly, Spinello and Arras [9] also used the Kinect cam-
era for people detection. For their approach, they combined the
Histogram of Gradients (HOG) feature descriptor algorithm
with their own variant, Histogram of Depths (HOD), to extract
features in the colour and depth images respectively and
classify pedestrians using a linear Support Vector Machine
(SVM). Once again their method was evaluated only under
indoor lighting conditions, and they do not report the accuracy
of their depth estimates.

Sharma and Green [10] took a slightly different approach to
estimating pedestrian distance, using background subtraction
to identify pedestrians. The pixels identified as pedestrians
were mapped to the depth map computed by an Intel Re-
alSense R200 camera to estimate distance. However, there
method also detected other moving objects in the scene and
no distinction between these and pedestrians is made. Their
method only achieves 45% accuracy when the camera was
mobile and was unable to operate in bright outdoor conditions.

Nimmo and Green [11] also used an Intel RealSense R200
camera. However, instead of background subtraction to detect
pedestrians, they used the Single Shot Detector (SSD) network
to predict bounding boxes. Depth values for pedestrians are
estimated using the depth value at the centre of the bounding
box. One limitation of this approach is that if the depth
estimates at the centre of the bounding box are inaccurate
or missing, then the distance is unable to be estimated.
This is particularly likely in outdoor conditions. Their depth
estimation was only tested under controlled, indoor conditions
at a range of up to 1.3m. Under these conditions, their method
proved to be accurate to 0.1 m.

To summarise, there are several limitations in the current
research into pedestrian detection and distance estimation,
these include the following:

o Poor performance and a lack of evaluation, particularly of
the quality of distance estimates, under outdoor lighting
conditions.

« A reliance on dense, high quality depth information.

Our method aims to address these issues by using instance
segmentation to identify pedestrians and distance estimation
techniques more robust to less dense depth information caused
by variations in outdoor lighting conditions.

III. PROPOSED METHOD

Our proposed method consists of two main stages: seg-
menting pedestrians using a Mask R-CNN model [12] and
estimating the distance to each pedestrian using the depth map
generated by an RGB-D camera. In the first stage, colour
images are first fed through the Mask R-CNN model to
identify the pixels associated with pedestrians in the scene. In
the second stage, the pixels in the predicted instance masks are
then mapped to a filtered depth map, and the median distance
is computed for each pedestrian.

A. Tools and Apparatus

To capture images and depth data, we use an Intel RealSense
D435 camera, the specifications for which are listed in Table I.
Our software is implemented in Python, using the RealSense
SDK 2.0, OpenCV and PyTorch. Although the D435 is capable
of capturing colour and depth images at a range of higher
resolutions, we use 640 x 480 pixel images to enable faster
processing at inference time. The system our method is trained
and evaluated on uses an AMD Ryzen 2500X CPU, 16 GB
of RAM and an Nvidia RTX 2070 GPU.

TABLE I
SPECIFICATIONS AND SETTINGS OF THE INTEL REALSENSE D435
CAMERA USED.

Range 0.2m to 10m

RGB FOV 69° (H) x 42° (V)

Depth FOV 74° (H) x 62° (V)

RGB Image Resolution 640 x 480

Depth Image Resolution 640 x 480

Frames per Second 30

‘Weight 73 g

Dimensions (W x H x D) 90 mm X 25 mm X 25 mm
Data Connection USB 3.0

Supported Operating System  Linux, Windows

B. Pedestrian Instance Segmentation

To classify and predict bounding boxes and binary masks
for pedestrians we use a Mask R-CNN model [12]. Mask R-
CNN is a convolutional neural network (CNN) which extends
the Faster R-CNN [13] architecture. The network consists
of three stages: 1) a backbone CNN, 2) a region proposal
network (RPN) and 3) a stage which classifies objects and
predicts bounding boxes and instance masks. The backbone
CNN is responsible for extracting features from raw image



and generating a feature map. We use a ResNet-50 [14]
CNN as the backbone in our model. The second stage RPN
scans the resultant feature map from the backbone network to
identify potential regions of interest (Rols) which may contain
objects. This is represented by the first block in the architecture
diagram shown in Fig. 3. One difference to Faster R-CNN is
that the Rols pass through an RolAlign layer as opposed to an
RolPool layer. The RolIAlign layer resizes identified Rols to a
fixed size, but does so using bi-linear interpolation to avoid the
discretisation which occurs using RolIPool layers. This helps to
create more accurate instance masks, which are more sensitive
to misalignment than bounding boxes. The final stage predicts
the class labels for for identified Rols and performs bounding
box regression to create bounding boxes, the same as Faster
R-CNN. However, in parallel to this, another branch of the
model uses a fully convolutional network (FCN) to predict
binary masks for each object. This branch is represented by
the final two convolution blocks parallel to the classification
and bounding-box regression branch shown in Fig. 3.

Fig. 2. The coarse mask annotations included with the COCO dataset [15]
(left) compared to the fine mask annotations included with the Supervisely
Persons dataset [16] (right).

The Mask R-CNN model we use is pre-trained on the
Microsoft Common Objects in Context (COCO) dataset [15].
To specialise our model for pedestrian detection and seg-
mentation, we apply transfer learning and train our model
on the Supervisely Persons dataset [16]. This has two main
advantages. First, it focuses our network on recognising only
people, as opposed to balancing performance across the 80 ob-
ject categories in the COCO dataset. Second, the Supervisely
dataset includes more fine-grained instance masks than the
coarse annotations included with the COCO dataset, allowing
for more accurate predictions. The difference in the quality of
the annotated masks provided with the COCO and Supervisely
datasets is shown in Fig. 2.

The Supervisely dataset contains 5711 images with 6884
fine instance-level annotations. These are split 70-30% for
training and testing (3998 and 1713 images respectively).
Since the images are of variable sizes and the images pro-
cessed at inference time are fixed at a size of 640 x 480
pixels, each image is cropped to the central 640 x 480 pixel
region.

conv

Fig. 3. A high-level architecture diagram of the Mask R-CNN framework
[12].

C. Depth Estimation

Depth maps are computed from the left and right stereo
infrared images captured by the RealSense D435 using the
Semiglobal Matching algorithm [17]. To add extra features to
the images, an infrared projector shines a dotted grid on the
scene.

To estimate the distance to each pedestrian, the depth map
is aligned to the RGB image. This allows us to overlay each
instance mask over the depth image to extract depth values for
each pedestrian. We use the median depth value of the instance
mask for our estimate of the distance to each pedestrian. In
preliminary testing, we found that using the mean depth value
often produced large distance estimates, as it was influenced
by depth values far away in the background around the edges
of pedestrians that were incorrectly classified as belonging to
them.

Because our method does not require dense, high quality
depth values across the entire field of view [9] or high quality
depth values in very specific locations, such as the centre of
each bounding box [11], our method is poised to be more
robust to outdoor lighting conditions than previous work.

D. Depth Post-Processing

Fig. 4. The raw (left) and filtered (right) depth map.

To improve the accuracy of our system, we perform several
post-processing procedures on the raw depth information ob-
tained. The results of which are shown in Fig. 4. To obtain
our final depth image, we perform edge-preserving filtering,
spatial hole-filling and temporal filtering. Each of these are
explained below.

1) Edge-preserving filtering: Edge-preserving filtering [18]
attempts to smooth depth noise while preserving edges. This is



achieved by scanning each row and column of the depth map
bidirectionally and applying a modified exponential moving
average (EMA) filter. Using an EMA filter, the smoothed
depth value, S;, for a pixel ¢ is calculated using the recursive
equation defined in Eq. 1.

Z1 t=1
aly + (1 —Q)thl t>1& |Zt — Zt,1| <4 (1)
Zy t>1& |2y — Zi—1| > 0

S =

In Eq. 1, « determines the level of smoothing and § sets
the threshold for which two neighbouring pixels are defined as
edge pixels. The values of « and ¢ are empirically determined,
we use the recommended values 0.6 and 8 respectively [18].
0 is measured in units of 1/32 disparities [18].

2) Spatial hole-filling: Spatial hole-filling [18] is applied to
fill holes in the depth map where there is either no data (e.g.
occlusion) or low confidence in a depth value. This is achieved
by convolving the kernel shown in Table II over the depth map.
When a missing value coincides with the centre of the kernel,
it is assigned the minimum value of pixels above, below and
to the left. The minimum valid depth value is chosen to bias
closer depth readings. In the interest of safety, it is better to
have a false positive (an object reported closer than it really
is) than a false negative (an object reported further away than
it really is). The kernel considers only left pixels as the stereo
algorithm is left-referenced [18].

TABLE II
THE KERNEL USED FOR SPATIAL HOLE-FILLING.

1110
1100
111]0

3) Temporal filtering: Temporal filtering is used to smooth
depth values with respect to time. As with the edge-preserving
spatial filtering a modified EMA filter is used [18]. For
temporal filtering the same formulation as Eq. 1 is used, except
t denotes the current frame as opposed to the current pixel.
The « and § values are used are 0.5 and 20 respectively. Again,
these values are recommended by [18].

E. Evaluation

We perform a number of evaluations on our method to test
performance and robustness to external factors such as lighting
and distance. To be deployed in outdoor environments, our
method must demonstrate that it can perform well in non-
ideal situations. We briefly explain each of our evaluation
procedures below.

1) Pedestrian Segmentation: To evaluate the pedestrian
segmentation performance of our trained Mask R-CNN model,
we evaluate our model on a set of test images from the
Supervisely Persons dataset. As we were unable to find any
competing results for segmentation on the Supervisely Persons
dataset, we also evaluated our model on the set of COCO
dataset test images and compared the results to the person

segmentation results achieved by the top three models in the
COCO 2018 Challenge [19]. To measure the performance of
our pedestrian segmentation model on each of the test sets, we
use the set of standard COCO evaluation performance metrics
[15]. The metrics are the mean average precision (AP) across
a variety of intersection over union (IoU) thresholds and the
mean average precision for small, medium and large objects
(APs, APy; and APy, respectively).

2) Fill Rate: Since our method is designed to operate
outdoors, it is essential that it is robust to different lighting
conditions. We perform qualitative and quantitative evaluations
to assess performance. We use the set of lighting conditions
defined by Vit and Shani [20]. These are given in Table III.
Essential to accurate depth estimation is a high fill rate across
the region of interest. The fill rate is defined at the percentage
of pixels in the region of interest for which there are depth
values. For our task, the region of interest is defined as the
pixels which belong to the predicted instance masks. The fill
rate is calculated before any post-processing. For each of the
lighting conditions listed in Table III, a person is placed at
Im intervals within the range of 1m to 5m. The distance to
each pedestrian is measured using a tape measure. For each
distance and lighting combination, the mean fill rate across 10
consecutive frames is measured.

TABLE III
LIGHTING CONDITIONS TESTED IN OUR SYSTEM EVALUATION.

Lighting Condition ‘ Lux Range
Dawn/Dusk < 1000 lux
Overcast 1000 - 10,000 lux
Full Daylight 10,000 - 32,000 lux
Direct Sunlight > 32,000 lux

3) Distance Estimation: The Intel RealSense D435 is
factory-calibrated, and even though we do not require sub-
centimetre depth accuracy, we still assess the accuracy of the
depth readings from start-up in controlled lighting conditions.
The interest here is to check that the depth readings are
reasonably accurate and to assess how long it takes after a
cold start-up for the depth readings to stabilise. Placing the
camera 0.60 m from a wall, the furthest away possible with
the wall still consuming the entire field of view, we measured
the mean depth reading each second for the first 15 minutes
of the device warming up. The distance from the wall was
measured using a laser measure.

Of more importance is the predicted distance accuracy of
pedestrians in real environments, this is evaluated following
the same procedure as our fill rate evaluations. For each
lighting combination and distance combination, a pedestrian is
placed at the measured distance from the camera. The average
pedestrian distance is estimated over 10 consecutive frames.

IV. RESULTS

A. Pedestrian Segmentation

The pedestrian segmentation results for our Mask R-CNN
model are summarised in Table IV. Our model was trained
for 2000 iterations, after which point performance plateaued.



On the Supervisely test set, our model performed very well,
achieving AP scores consistently higher than those achieved
by the top three models submitted for the COCO 2018
challenge. The only exception to this is the mean average
precision achieved on small scaled down images (APg). Our
model achieved only 10% for APg, indicating poor perfor-
mance segmenting small pedestrians. However, since small
pedestrians in the image represent those further away, this
metric is of the lowest practical significance.

Despite hopes that the fine annotations provided with the
Supervisely dataset might lead to better performance on the
COCO test set, our model achieves a lower mean average
precision than the top three models from the COCO 2018
challenge. Aside from the differences between models, one
possible reason for this is because our model was explicitly
trained on images of 640 x 480 pixels (as this is the resolution
of images captured by the D435). Because of this choice,
performance may suffer on images of larger and varying sizes,
like those included in the COCO set.

It is worth mentioning that comparisons across datasets
between our model and the other models are not completely
fair, since 1) the respective models are trained on different
datasets and 2) the quality and difficultly of the annotations
may differ across datasets. In future work, a comparison of
the models with the training and test sets held constant will
be evaluated, and tested to see whether the results translate to
real application performance improvements.

B. Fill Rate

With respect to fill rate, the D435 camera was able to collect
depth values for upwards of 90% of the region of interest
across all lighting conditions. Only at distances of 1 m and 2
m in direct sunlight did the average fill rate fall below 90%,
averaging 84.6% and 88.9% respectively. The reason for this is
likely because in these conditions, the pedestrian covers more
of the field of view, resulting in more pixels for which depth
values are required. The average fill rates for each distance
and lighting condition are shown in Table V.

C. Distance Estimates

For our start-up depth accuracy test, the mean estimated
depth for the duration of the 15 minutes from start-up was
near-constant, between 0.59 m and 0.58 m. This was less than
2 cm from the measured depth, and well within the accuracy
requirements for estimating pedestrian proximity. The near-
constant readings also demonstrate that there is no required
warm-up period for our approach.

The results for our outdoor distance evaluations are dis-
played in Fig. 5. Across all lighting conditions and all
distances, our method estimated pedestrian distances with
87.7% accuracy. Under dusk, overcast, full daylight and direct
sunlight conditions, our method estimated pedestrian distances
with 92.1%, 91.3%, 86.9% and 80.3% accuracy respectively.

Fig. 5 also shows that in general, the detector has a tendency
to overestimate pedestrian distance, which is something that
will be investigated in future work. An unsurprising trend is

Estimated vs. Measured Pedestrian Distances under
Different Lighting Conditions

Dusk

5 Owercast

Full Daylight
Direct Sunlight

Estimate Distance

1m Zm im 4m 5m
Measured Distance

Fig. 5. Mean estimated pedestrian distances under different lighting conditions
compared to the measured distances.

that depth estimation degrades with distance and brightness.
The degradation with distance can be explained by the reduced
disparity between the left and right images at greater distances
from the camera. For lighting, the brighter the sunlight the
more infrared interference is introduced by the sun.
Crucially, our method is able to estimate distances to pedes-
trians within reasonable bounds across lighting conditions at
close distances (within a few metres). This is something which
has not been achieved in prior work [7], [9], [10], [11]. Nimmo
and Green [11] were only able to achieve approximately 93%
accuracy at a distance of 1.3m in indoor lighting conditions.

D. Limitations

As mentioned in the above sections, our method does have
some limitations. Most notably, our detector has a tendency
to overestimate distances to pedestrians and performance de-
grades with both lighting and distance. There is also room for
improvement in pedestrian segmentation, which itself impacts
distance estimates. Although our segmentation model achieves
a 94.6% AP with a 0.5 IoU threshold on the Supervisely
Persons dataset, APs is only 10%.

Another limitation of our system is that it only runs at an
average of 15 fps. Other methods discussed [10], [11], [9]
achieve speeds of 30 fps. Improvements in speed may be
able to be achieved with more efficient algorithms or software
implementations, such as using C++ or implementing our
model in TensorFlow.

V. CONCLUSION

In this paper, we presented a novel method for detecting
pedestrians and estimating their distances using RGB-D data,
based on Mask R-CNN and depth information captured using
an infrared stereo RealSense D435 camera. Unlike previous
methods, tested only in controlled indoor environments, our
approach performs well across the full range outdoor lighting
conditions and distances, achieving an an average distance
estimate accuracy of 87.7%. For pedestrian segmentation, our
model achieves an APsy score of 94.6% on the Supervisely



TABLE IV
COCO METRIC SCORES OF THE TOP THREE COCO CHALLENGE 2018 MODELS [19] AND OUR MODEL FOR PERSON SEGMENTATION.

Backbone Dataset AP APsog APy APs APy APp
MMDet FishNet COCO 0.546 0.856 0.611 0.394 0.586 0.727
MegDet ShuffleNet v2 ~ COCO 0.544 0.867 0.621 037 0.582  0.723
FirstShot Mask R-CNN  COCO 0.528 0.822 0.584 0.316 0.571 0.746
Our Model | Mask R-CNN  COCO 0.362 0.639 0372 0.17 0434  0.568
Our Model | Mask R-CNN  Supervisely 0.679 0946  0.768 0.1 0.609  0.69
TABLE V [2] WorkSafe New Zealand, “WorkSafe Fatalities Detail,” 2019. [Online].

MEAN FILL RATES (AND STANDARD DEVIATION) FOR DIFFERENT
LIGHTING CONDITIONS AND DISTANCES.

Dusk Overcast Full Daylight  Direct Sunlight

(556 lux) (7,380 lux) (22,279 lux) (102,837 lux)
I'm | 90.7 % (0.3) 92.1 % (0.6) 913 % (0.4) 84.6 % (1.4)
2m | 923 % (0.2) 935 % (0.3) 92.7 % (0.3)  88.9 % (1.3)
3m | 941 % (0.2) 963 % (0.3) 963 % (0.2) 91.1 % (1.0)
4m | 973 % (0.2) 985 % (0.4) 99.0 % (0.1)  96.6 % (0.9)
S5m | 985 % (02) 989 % (04) 99.1 % (0.1) 979 % (0.5)

Persons dataset. Our method outperforms existing pedestrian
detection and distance estimation techniques [10], [11], [9],
[7], none of which have been proven to perform in outdoor
lighting conditions. Our method show promise for use in
automated and assistive driving technologies, and for dynamic
safety envelopes around industrial, agricultural or construction
equipment.

A. Future Work

Our method for pedestrian detection and distance estimation
is a promising approach which has demonstrated encouraging
preliminary results. However, as is evident by the limitations of
our system, there is still room for improvement. Some avenues
for future work are listed below.

1) Model improvements: Our model was only trained using
3998 images, a comparatively small amount compared to the
millions of examples commonly used to train top performing
neural networks. In future work, we will investigate perfor-
mance improvements which can be gained by training our
Mask R-CNN model on more examples and performance
enhancements which might be gained using different models.

2) Harnessing depth data for segmentation: In the current
form, our method segments pedestrians and predicts instance
masks using the RGB data alone. In future work, investigation
into also using the depth map for refining the predicted
instance masks will also be investigated. Spinello and Arras
[9] used both RGB and depth data for their segmentation with
positive results.

3) Estimating depth: As mentioned in our results, our
method consistently overestimates distances to pedestrians.
Further investigation into other methods for distance estimates,
other than the median mask value may yield less biased results.
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