Pedestrian Proximity Detection using RGB-D Data

. UNIVERSITY OF
Adam Tupper, Richard Green CANTERBURY

Te Whare Wananga o Waitaha
CHRISTCHURCH NEW ZEALAND

adam.tupper@pg.canterbury.ac.nz, richard.green@canterbury.ac.nz

In 2017, there were 39 pedestrian fatalities and 281 serious injuries as a re-

sult of vehicle-related accidents in New Zealand alone [1]. Furthermore,

there were 243 workplace fatalities in New Zealand between 2010 and o
Left IR

2018 that were related to vehicles and machinery [2]. In total over 50% of Image

all workplace fatalities over the same period were vehicle or machinery re-

lated [2]. These statistics highlight the need for increased safety measures

for vehicles and machines operating in proximity to humans.

e We propose a method for detecting and monitoring the distance of Right IR
humans from a machine within a narrow safety envelope using an @ Image

RGB-D camera.

e Our approach uses human instance segmentation and infrared stereo

vision to achieve this.
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1) A stereo pair of infrared images and a colour image are captured by a Re- preserving object edges and to fill holes in the depth map.
alSense D435 camera. 4) The colour image is passed through a Mask R-CNN human segmentation
2) A depth map is computed using the pair of infrared images using the Sem- model, trained initially on the COCO dataset [5] and then refined on the
iglobal Matching algorithm [3]. Supervisely Persons dataset [6].

3) The depth map is post-processed using edge-preserving spatial filtering, 5) The instance masks for each pedestrian are overlaid onto the depth map
spatial hole-filling and temporal filtering [4] to smooth depth noise while and the median distance estimate for the identified region is computed.

Figure 1: An example output for multiple pedestrians from our proposed method.
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e For each of the lighting conditions listed in Table 1, a person was placed

at 1m intervals within the range of 1m to 5m. Pedestrian Fill Rates at each Distance under Different
Lighting Conditions

Table 1: Lighting conditions tested in our system evaluation [12]. 100 -
Lighting Condition |Lux Range
Dawn/Dusk < 1000 lux g0 | [EECUEENEEE TEESEENEEN B -
Overcast 1000 - 10,000 lux _ . .
Full Daylight 10,000 - 32,000 lux g NE R BN B R e For pedestrian segmentation, our model achieves an APsqy score of
Direct Sunlight > 32,000 lux g 94.6% on the Supervisely Persons dataset.

% ol O B . e Only at distances of 1 m and 2 m in direct sunlight did the average fill

e The Supervisely Persons dataset contains 5722 images with 6884 fine in- rate fall below 90%.
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stance-level annotations. These were split 70-30% for training and
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5 | ™ Overcast e QOur approach performs well across the full range of outdoor lighting
| W= Full Daylight conditions and distances, achieving an average distance estimate accu-
c Bl Direct Sunlight
= racy of 87.7%.
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Figure 2: The coarse mask annotations included with the COCO dataset (left) compared to the fine o ® DEPth estimation degrades with distance and brlghtness.
mask annotations included with the Supervisely Persons dataset (right). g . . . . . .
- e The degradation with distance can be explained by the reduced dispari-
Q . . .
\- J = ty between the left and right images at greater distances from the cam-
=
E= era.
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e The degradation with brightness can be explained by increase in infra-
red interference.
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Conclusions & Future Work

e We present a new method for detecting pedestrians and estimating their distances using RGB-D data, based e Avenues for future work include:

on Mask R-CNN [7] and the depth information captured using an infrared stereo Intel RealSense D435 camera. e Harnessing depth data for segmentation

* Unlike previous methods tested in only controlled indoor environments [8, 9, 10, 11], our approach performs ¢ Investigating methods for increasing distance estimation accuracy under bright conditions and at greater dis-
well across the full range outdoor lighting conditions and distances. tances.

e Our method shows promise for use in automated and assistive driving technologies, and for monitoring dy- e Exploring different methods for depth estimate aggregation.

namic safety envelopes around industrial, agricultural or construction equipment.
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