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Overview

� The size of deep neural networks that have shown success in
solving complex reinforcement learning (RL) problems limits the
effectiveness and benefits of neuroevolution methods that have proven
effective at solving simpler RL problems in the past.

� A potential solution to this problem is to separate state
representation and policy learning, and only apply neuroevolution to the
latter.

� We extend research following this approach [1, 4] by evolving small policy
networks for Atari games using NEAT [5], that learn from compact state
representations provided by the recently released Atari Annotated RAM Interface
(AtariARI) [2].
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Method

� We used NEAT to evolve agents that take, as input, the values of state
variables provided by the AtariARI.

� The AtariARI identifies the bytes of RAM that store important
state variables, reducing the size of the input space by up to 93% when
compared to using the entire contents of RAM.

� We chose 14 games to use in our evaluations, based on our assessment
of the perceived completeness of the information provided by the AtariARI. These
games have representations that are either good (complete) or fair (near-complete).

� A single set of hyperparameter values were used to evolve a
separate agent for each game. These were chosen based on informal
experimentation on a subset of three games: Asteroids, Boxing and Pong.

� For each game, three evolutionary runs were performed, each lasting
200 generations, with a population size of 130. The reported results are for the best
performing agents among those runs.

� The performance of each agent is compared to expert human
scores published alongside DQN [3].

Overall Performance

The agents for Video Pinball, Boxing, Bowling, and Freeway exceed
or are competitive against expert human performance.
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Although most of the best performing games have good state representations, the highest
performing agent was found for Video Pinball. This illustrates that for some games,
good strategies can still be discovered with imperfect information.

Two conditions are reported for Tennis because initially (Tennis A), the evolved agent
exploited a loop-hole in our setup by refusing to serve the ball, instead waiting for the
episode frame cap to limit it’s losses.

Evolved Architectures

A surprising aspect of our results was the simplicity of the evolved architec-
tures for some high-performing solutions. The best-performing agents for
Freeway and Bowling epitomise this simplicity, utilising only one, and no hidden
nodes respectively.
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(a) Freeway agent
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(b) Bowling agent

Although the simplicity of some Atari games is widely known, these results show just
how simple some solutions can be. Training a fixed architecture would likely never lead
to such solutions, highlighting the benefit of TWEANN neuroevolution methods.

Conclusions & Future Work

� Although evolved policies only exceeded or were competitive with expert human performance in a handful of games, we discovered that surprisingly simple and small neural
networks could play these game effectively.

� In our ongoing work, we are investigating the performance of a separated state representation and policy learning framework that uses NEAT to evolve policy learners from
learned compact state representations.
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