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Over the past decade, video games have become increasingly utilised for research in arti-

ficial intelligence. Perhaps the most extensive use of video games has been as benchmark

problems in the field of reinforcement learning. Part of the reason for this is because

video games are designed to challenge humans, and as a result, developing methods

capable of mastering them is considered a stepping stone to achieving human-level per-

formance in real-world tasks. Of particular interest are vision-based general video game

playing (GVGP) methods. These are methods that learn from pixel inputs and can

be applied, without modification, across sets of games. One of the challenges in evo-

lutionary computing is scaling up neuroevolution methods, which have proven effective

at solving simpler reinforcement learning problems in the past, to tasks with high-

dimensional input spaces, such as video games. This thesis proposes a novel method for

vision-based GVGP that combines the representational learning power of deep neural

networks and the policy learning benefits of neuroevolution. This is achieved by sepa-

rating state representation and policy learning and applying neuroevolution only to the

latter. The method, AutoEncoder-augmented NeuroEvolution of Augmented Topolo-

gies (AE-NEAT), uses a deep autoencoder to learn compact state representations that

are used as input for policy networks evolved using NEAT. Experiments on a selec-

tion of Atari games showed that this approach can successfully evolve high-performing

agents and scale neuroevolution methods that evolve both weights and topology to do-

mains with high-dimensional inputs. Overall, the experiments and results demonstrate

a proof-of-concept of this separated state representation and policy learning approach

and show that hybrid deep learning and neuroevolution-based GVGP methods are a

promising avenue for future research.
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Chapter 1

Introduction

The ability to learn from experience and through interaction with an environment is

perhaps one of the first skills we think of when describing intelligent agents, such as

ourselves. This trial-and-error style of learning is something that we humans apply to

great success in learning many procedural and cognitive tasks, including learning how

to walk, ride a bicycle, or play chess. For example, consider a child that is learning

how to walk. They are acting in an environment, the real world, that they observe

and that changes in response to their actions. They are trying to achieve some goal,

usually in the beginning to move on their own from one parent to the other. Finally,

they receive reward based on their progress towards completing the goal, in the form of

encouragement and praise. These types of problems – where an agent must learn which

actions to perform to maximise some reward – are sequential decision-making problems,

commonly referred to as reinforcement learning (RL) problems.

Over the past decade, research on developing RL methods for artificial agents has quickly

advanced from solving simple problems, using high-level features (observations) from the

environment, to solving more complex problems in more complex environments. Thanks

to the advancements in deep learning, the focus has quickly shifted to vision-based RL

problems, where the agent must learn how to act appropriately based on images of

the environment, rather than hand-crafted features. Whereas RL methods were once

assessed on their ability to solve classical control problems, such as pole balancing (Geva

and Sitte, 1993), we are now at the stage where methods are assessed on their ability to

solve benchmarks that challenge human-level intelligence, such as video games.

1
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Video games have become increasingly utilised tools for research in artificial intelligence,

and perhaps the most extensive use has been as benchmark problems in the field of RL.

Part of the reason for this is because video games are designed to challenge humans,

and as a result, developing methods capable of mastering them is considered a stepping

stone to achieving human-level performance in real-world tasks. In line with the desire to

develop vision-based RL methods, of particular interest are general video game playing

(GVGP) methods that learn from pixel inputs and can be applied across sets of games.

In the past, an effective method for solving simple RL problems was to use evolutionary

algorithms to optimise a neural network, what is known as neuroevolution, that encodes

an agent’s strategy. Particularly effective were methods that optimise both the weights

and topology (architecture) of neural networks (Stanley and Miikkulainen, 2002). How-

ever, while deep RL methods have allowed us to tackle harder RL problems, the large

networks required to learn both state representation and policy using this approach

limit the effectiveness and benefits of neuroevolution. This thesis explores a potential

solution for scaling up topology and weight evolving neuroevolution methods to complex

RL problems with high-dimensional inputs. Our specific focus is on vision-based GVGP.

Our solution separates end-to-end learning into two components: state representation

learning and policy learning. In the following section we discuss our motivation for

pursuing this research, before then describing our aims and approach.

1.1 Motivation

Evolutionary reinforcement learning (ERL) methods have several properties which make

them well suited to overcoming some of the difficulties faced by gradient-based deep RL

methods. First, using neuroevolution we can evolve the topology of neural networks,

something that cannot be optimised via gradient descent due to the lack of a differen-

tiable loss function. Second, they allow us greater exploration of the policy space, and

third, they do not suffer from problems that arise due to sparse rewards. We discuss each

of these advantages below, as well as some key disadvantages faced by ERL methods

that motivate our approach.

The ability to optimise both the weights and topology is one distinct advantage of

neuroevolution that provides many benefits (Turner and Miller, 2013). Not only can
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evolving the topology remove or reduce the effort spent on time-consuming architecture

design, it also reduces human bias and can, as a result, lead to the discovery of more

compact and creative architectures. Smaller networks are more memory efficient and

are faster at inference time, which are particularly useful advantages for embedded RL

applications, such as robotic control. They can also be trained more efficiently due to

the reduced number of parameters that need to be optimised. The freedom afforded by

optimising both the weights and topology also contributes to greater exploration of the

policy space.

There are also several additional factors that contribute to the greater exploration of

the policy space when using evolutionary algorithms. First, evolutionary algorithms

evolve a population of solutions, which means that multiple strategies can be explored

and optimised simultaneously. Second, they do not follow the gradient of the reward

signal and therefore do not risk following it to locally optimal behaviour. When using

gradient-based methods, it is common for the reward signal to at times mislead the

agent and discourage them from learning behaviours that would eventually lead to an

optimal policy (Such et al., 2017).

Finally, ERL methods are immune to the difficulties introduced when solving problems

with sparse rewards. When feedback (reward) is given to the agent infrequently, after

a long sequence of actions, the agent is faced with what is commonly referred to as the

credit assignment problem (Sutton and Barto, 2018). The agent must identify which

actions within the long sequence contributed most to receiving the reward. An example

of such a situation is when the agent is only rewarded with a win or a loss at the end of

a game. Gradient-based RL methods sometimes use shaped rewards that try to provide

more guidance to alleviate the credit assignment problem, but this can often result in

a policy that does not correspond to the problem we actually want the agent to solve

(Such et al., 2017). In contrast, evolutionary methods search directly in the policy space

and do not seek to learn the value of individual states or state/action pairs. The only

thing that matters is the total accumulated reward at the end of the evaluation, and

therefore the frequency with which the agent receives reward is inconsequential. Because

of this approach, they avoid the credit assignment problem.

Despite the advantages described above, gradient-based deep RL methods are popular

and successful in part because they are particularly good at optimising the large models
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that are required for solving complex tasks with high-dimensional inputs. These large

networks are able to both (a) extract features and learning good representations of the

state of the environment, and (b) learn a policy that dictates how the agent should act.

Scaling neuroevolution methods that evolve both the weights and topology to domains

with high-dimensional input spaces is a key challenge in enabling evolutionary methods

to compete with gradient-based methods in vision-based tasks. Existing methods suffer

because there is a low limit on how fast evolution can proceed when optimising large

networks. Only small changes to weights and topology can be made at a time to prevent

breaking existing functionality between generations, yet it takes many such changes to

realise a real difference in the performance of the task. Although several deep neuroevo-

lution algorithms have been shown to be competitive with gradient-based approaches

for some tasks (Salimans et al., 2017, Such et al., 2017), it is apparent that the increased

size of the networks required for end-to-end learning limits their effectiveness.

The advantages and disadvantages discussed motivates our investigation into a sepa-

rated state representation and policy learning approach. While the idea of separate

state representation and policy learning is not in itself new, there is a lack of research

around the generalisability of such methods, hence our focus on GVGP. There are also

novel differences in the specific method we propose. Similar methods are discussed and

compared in the literature review (Chapter 3).

1.2 Aim and Approach

This thesis proposes a novel method for vision-based GVGP that combines the repre-

sentational learning power of deep neural networks and the policy learning benefits of

neuroevolution. This is achieved by separating state representation and policy learning

and applying neuroevolution only to the latter. Our method, AutoEncoder-augmented

NeuroEvolution of Augmented Topologies (AE-NEAT), uses a deep autoencoder to learn

compact state representations that are used as input for policy networks evolved using

NEAT (Stanley and Miikkulainen, 2002).

Our overall aim is to provide a proof-of-concept that this separated state representation

and policy learning approach can be used for GVGP. This goal is divided into three

main objectives:
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(4) Overall AE-NEAT 
Descript ion

(7) Overall AE-NEAT Evaluat ions

(1) Int roduct ion, (2) Background, and (3) Literature Review

(8) Conclusions

(5) Independent  SRL Component  
Experiments

(6) Independent  Policy Learning  
Component  Experiments

Figure 1.1: An overview of the relationship between chapters and the overall flow of
the research and contributions of this thesis.

1. To identify an autoencoder-based state representation learning method for learn-

ing compressed state representations from images that generalises across multiple

games.

2. To evaluate the applicability of using NEAT to evolve policy networks from com-

pact state representations.

3. To develop a proof-of-concept that a separated state representation and policy

learning RL method can scale neuroevolution to complex problems with high-

dimensional inputs without the loss of generality.

1.3 Organisation

This thesis consists of eight chapters, including this chapter, the introduction.

Chapter 2 provides an overview of some of the fundamental components that this work

builds on and utilises. The aim of this chapter is to provide some familiarity with key

concepts, such as autoencoders and evolutionary algorithms, that underlie this work.
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Chapter 3 discusses prior work in the area of evolutionary reinforcement learning,

focusing on previous methods that have applied evolutionary-based methods to vision-

based tasks. Here, we describe the differentiating factors of our work.

Chapter 4 introduces our proposed hybrid method of autoencoder-augmented evolu-

tionary reinforcement learning, AE-NEAT, in greater detail. We also describe some of

the high-level details common to all of our experiments and evaluations.

Chapters 5 and 6 describe the experiments performed to independently verify and

evaluate the state representation and policy learning components used in AE-NEAT,

respectively. Since these chapters focus on separate components and both feed into

Chapter 7, they can be visualised as parallel investigations. This flow is depicted in Fig.

1.1.

Chapter 7 evaluates AE-NEAT (described in Chapter 4) as a whole, combining the

knowledge acquired in chapters 5 and 6.

Chapter 8 summarises the work presented and contributions of this thesis. We draw

conclusions based on our work and provide a discussion on potential avenues of investi-

gation for future research.



Chapter 2

Background

The research presented in this thesis sits at the intersection of deep learning, evolutionary

computing, and reinforcement learning. This chapter provides an overview of the key

concepts and methods that underpin our work from each of these fields. While an effort

has been made to arrange the sections as a progression of concepts, fully understanding

the links between each concept may require multiple readings for readers unfamiliar

with all three fields. In the following chapter, we discuss the literature directly related

to vision-based evolutionary reinforcement learning.

2.1 Neural Networks

Neural networks (more formally known as artificial neural networks) are general function

approximators that are loosely inspired by the structure of neurons and synapses in

biological neural networks, such as the brain. They consist of neurons that are typically

arranged as a sequence of interconnected layers. The first and last layers are labelled the

input and output layers, respectively. The layers between these two outermost layers are

referred to as hidden layers. An example of a neural network that represents a function

with two inputs and a single output is illustrated in Fig 2.1. Neural networks with only

forward connections between neurons are known as feed-forward neural networks.

The individual neurons within a neural network represent simple mathematical func-

tions. Each neuron has one or more incoming connections (inputs), a bias, and an

7
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Input  
Layer

Hidden 
Layer 1

Hidden 
Layer 2

Output  
Layer

Figure 2.1: An example of a multilayered feed-forward neural network with two
inputs, a single output, and two hidden layers.

output (or activation, as it is sometimes known). The output of each neuron a is a

function of the weighted sum of the inputs x and the bias b:

a = g(b+
n∑
i=1

wixi) (2.1)

This is also depicted in Fig. 2.2. The weights w and bias are learnable parameters.

The weights scale the inputs from the incoming connections and the bias is used to shift

the output by a constant amount. The activation function g usually performs a simple

nonlinear transformation, which allows the network to approximate arbitrary nonlinear

functions. The sigmoid function is a commonly used activation function:

g(x) =
1

1 + e−x
(2.2)

Differentiable activation functions are used to enable the network to be trained using

an approach called back-propagation (Rumelhart et al., 1986). Although a network with

a sufficiently large single hidden layer is theoretically able to approximate any function

(Hornik, 1991), multilayered deep neural networks are most commonly used in practice

because they are easier to optimise.
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Figure 2.2: An example of how the output of a single neuron is calculated.

Neural networks are trained to minimise a loss function L that describes the error in

the approximation of the true function f . An example of a loss function suitable for

regression is the mean squared error (MSE) over a set of training examples:

LMSE =
1

n

n∑
i=1

(yi − ŷi)2 (2.3)

where n is the number of examples, and yi and ŷi are the true and predicted values for

each example, respectively. The back-propagation algorithm uses gradient descent to

optimise the learnable parameters θ (weights and biases) of a neural network so that

the loss is minimised. The algorithm iteratively calculates the partial derivatives δL
δθj

of

the loss function L with respect to each parameter θj . These partial derivatives tell us

how quickly the loss changes as we change each parameter. With each iteration, the

weights are updated by an amount proportional to δL
δθj

, as given by the equation from

Rumelhart et al. (1986):

θj ← θj − η
δL

δθj
(2.4)

The magnitude of the weight updates is controlled by a hyperparameter η, the learning

rate.

Back-propagation is an efficient training algorithm that has proven effective at training

deep neural networks when combined with implementations that utilise graphics process-

ing units (GPUs) for performing calculations. Before moving on, the next subsections

briefly introduce two different extensions to neural networks: recurrent neural networks

and convolutional neural networks.
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Figure 2.3: An example of the how the values of the inputs, hidden state, and outputs
in a recurrent neural network are propagated over time.

2.1.1 Recurrent Neural Networks

The feed-forward neural networks described previously only contain connections that

propagate the output of each node forwards. However, neural networks can also be

designed that include backward or recurrent connections. Such networks are called

recurrent neural networks (RNNs).

The advantage offered by RNNs is that nodes are able to consider values from previous

time steps. As a result, they can utilise a form of memory and enables them to learn

temporal functions and extract patterns from sequential data, such as text or video.

In contrast to feed-forward networks, where the entire network from the inputs to the

outputs is calculated in a single time step, with RNNs, there is a time delay. In an RNN,

the output of each node is propagated forward one step at each time step. Figure 2.3

illustrates this behaviour.

RNNs are commonly trained using a modified version of the back-propagation algorithm,

known as back-propagation through time. This training procedure “unfolds” the network,

as shown in Fig. 2.3, and trains the larger resulting network. The details of this

procedure are not covered because in this research RNNs are trained using evolutionary

optimisation (covered in §2.3).

2.1.2 Convolutional Neural Networks

Another extension of neural networks is convolutional neural networks (CNNs) (LeCun

et al., 1989). CNNs are used when the input data is arranged in a grid-like structure, such
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Figure 2.4: An example of how a single filter is implemented in a convolutional neural
network.

as the pixel values of images. They are designed to take advantage of the assumed spatial

relationship between the inputs to reduce the number of parameters in the network and

make the processing of spatial data more efficient (Karpathy, 2015).

The backbone (the initial layers) of a CNN is typically composed of interleaved con-

volution and pooling layers. Convolution layers are used to extract spatial invariant

features from the inputs, whereas pooling layers reduce the dimensionality. The final

layer of the convolutional backbone is usually connected to a number of fully connected

feed-forward and/or recurrent layers that process the extracted features for the desired

task (e.g. classification).

To illustrate the benefits of using convolution layers over fully connected layers, imagine

a single channel (e.g. grey scale) 100 × 100 pixel image. If we were to connect each

pixel to a hidden layer with even just a single fully connected neuron, we would have

100× 100 = 10, 000 weights to train for this neuron alone. To avoid this, convolutional

layers learn filters (otherwise known as kernels) that contain neurons that share weights

and biases. Each neuron within a filter shares the same weights and bias, and simply

applies the filter to a different part of the image. This has the effect of convolving the

filter over the entire input. For example, a 3× 3 filter applied to a single channel input

has only 9 weights and 1 bias. As a result, each filter is used to identify the same
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features, e.g. edges, in different parts of the image. An additional hyperparameter, the

stride, determines how far the filter is shifted across the input. This idea is illustrated in

Fig. 2.4. The resulting activation map created by a filter might be downsampled using

a pooling layer, or serve as the input for a subsequent convolution layer. By stacking

banks of filters (layers), we create deeper networks that can extract increasingly abstract

features at each layer.

2.2 Representation Learning

An important component of our research is representation learning. This is the task of

learning compact or compressed representations of data, such as images or text. In our

case, we aim to learn compact representations of the game states of Atari games from

the images that are ordinarily displayed on screen. To accomplish this, we focus on

a particular class of representation learning techniques, autoencoders. In the following

subsections, we provide an overview of the basic theory and implementation aspects of

two different types of autoencoders that we investigate in our work: undercomplete and

variational autoencoders.

2.2.1 Undercomplete Autoencoders

An autoencoder is a neural network that is trained to reproduce its inputs. However,

rather than simply learning to memorise the training data, the aim is for the network to

learn to extract useful features about the data. The simplest approach to achieve this is

to introduce an information bottleneck in the network, a choke point that restricts the

amount of information that can pass through the entire network. Autoencoders that

rely on this bottleneck alone to force the network to learn which aspects of the data are

important are known as undercomplete autoencoders.

An autoencoder consists of two halves; an encoder that learns a function f(x) that maps

an input x to a latent space encoding or compressed representation z, and a decoder

that learns a function g(z) that maps an encoding z back to a reconstruction of the

input x̂. As illustrated in Fig 2.5, we restrict the number of neurons in the encoding

z to a value less than the dimensionality of the input. This causes the information

bottleneck in the network.
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DecoderEncoder

Figure 2.5: A simple undercomplete autoencoder. In the process of learning to recon-
struction its inputs x, it encodes the most important features of the data for achieving

this in the encoding z.

By forcing the network to prioritise what information is retained, the network is forced to

learn only the features of the data that are most important for reconstruction. However,

it is worth noting that the most important features for reconstruction may not always

align with the most important features for policy learning. This is an issue that we

tackle in Chapter 5.

Undercomplete autoencoders are trained solely to minimise the difference between the

inputs x and the reconstructed outputs x̂. A commonly used loss function is the mean

squared error, repeated below:

LMSE(x, x̂) =
1

n

n∑
i=1

(xi − x̂i)2 (2.5)

Because of the ability to learn nonlinear encoding and decoding functions, through the

use of nonlinear neuron activation functions, undercomplete autoencoders are a more

powerful nonlinear generalisation of Principal Component Analysis (PCA) (Goodfellow

et al., 2016).

Although early autoencoders consisted of single-layer encoders and decoders (as shown

in Fig. 2.5), deep autoencoders have been shown to offer better compression than shallow

or linear autoencoders (Hinton and Salakhutdinov, 2006). Autoencoders have also been

extended to use convolutional layers in place of fully connected layers, to reap the benefits

of convolutional neural networks (§2.1.2). 2D convolutions allow the network to learn
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spatial relationships in the data and require fewer parameters. This allows us to scale

up to larger images. We use convolutional encoders and decoders in our work.

Although undercomplete autoencoders offer advantages other traditional representation

learning techniques, it is still not guaranteed that they will perform well for our pur-

pose. For this reason, we also investigate an extension to undercomplete autoencoders,

variational autoencoders.

2.2.2 Variational Autoencoders

Variational autoencoders (Kingma and Welling, 2013) use a statistical approach for

learning compact encodings. They assume that the training data is drawn from a dis-

tribution that can be parameterised by the latent variables z. They attempt to learn

a probability distribution for each latent variable, through a process called variational

inference. This contrasts with undercomplete autoencoders that output a single value

for each latent variable. When decoding, we sample from each distribution to generate

a vector to serve as the input for the decoder. An advantage of this approach is that by

learning a distribution for each latent variable, we force the encoder to learn a smooth,

continuous latent space representation of the data, where similar observations should be

located close to each other in the latent space. Our interest in variational autoencoders

is that they may learn different encodings to undercomplete autoencoders that are better

suited for policy learning.

2.2.2.1 Theory

Variational autoencoders formulate the problem of learning compressed representations

as follows. We treat our training data x as a set of observations that are drawn from an

underlying distribution that we can parameterise using a set of latent (hidden) variables

z. We can then describe the problem of learning the generating distribution, given our

training data, using Bayes rule:

p(z|x) =
p(x|z)p(z)

p(x)
(2.6)
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However, we cannot compute the distribution of p(z|x) analytically, because to do so

requires us to compute the distribution p(x). Although p(x) can be calculated via

p(x) =

∫
p(x|z)p(z)dz (2.7)

it is intractable do so, due to the size of the search space of z.

This is where variational inference comes in. Instead of computing p(z|x) analytically, we

try to approximate it using a distribution q(z|x) that we restrict to a family of Gaussian

distributions, i.e. each latent variable zi is modelled by a Gaussian distribution. We can

use Kullback Leibler (KL) divergence (Kullback, 1997) to measure the distance between

the approximation and the true distribution to find the optimal approximation q∗(z|x):

q∗(z|x) = min
z∈z

KL(q(z|x)||p(z|x)) (2.8)

Training the variational autoencoder then becomes an optimisation problem, in which

we optimise a loss function consisting of the reconstruction error and the KL divergence:

L(x, x̂) +
∑
j

KL(qj(z|x)||p(z|x)) (2.9)

2.2.2.2 Implementation

Since variational autoencoders learn a distribution for each latent variable, the infor-

mation bottleneck is implemented in a slightly different way to the undercomplete au-

toencoder shown in Fig 2.5. Instead, the bottleneck is implemented as shown in Fig

2.6.

The bottleneck is separated into two vectors: one that encodes the mean of each hidden

variable, µi, and another that encodes the variance, σ2i . These two parameters allow us

to encode a Gaussian distribution for each hidden variable. Unlike a true multivariate

Gaussian, we make a simplifying assumption that each distribution is independent, which

allows us to encode the variances in a vector.



Background 16

Variance

Encoder Decoder

Mean

Sam ple

Figure 2.6: A simple variational autoencoder.

To ensure the network is trainable, variational autoencoders use what is referred to as

the “reparameterisation trick” (Kingma and Welling, 2013). Since we must be able to

compute the derivative of each parameter with respect to the loss to train the autoen-

coder using backpropagation, the sample from the distributions encoded by µ and σ2 is

drawn by drawing a value from a standard Gaussian distribution and shifting the mean

and scaling variance by this amount.

2.2.2.3 Disentangled Variational Autoencoders

Finally, we also investigate the use of an extension to variational autoencoders, disentan-

gled variational autoencoders (Higgins et al., 2017a). Disentangled variational encoders

introduce a parameter β > 1 that assigns a higher weight to the KL divergence term in

the loss function:

L(x, x̂) + β
∑
j

KL(qj(z|x)||p(z|x)) (2.10)

Through greater penalisation of the difference between the distributions, we place a

larger emphasis on enforcing our simplifying assumption that the distributions of each

latent variable are uncorrelated and follow independent Gaussian distributions. This

has the effect of ensuring that each latent variable encodes a different attribute in the

data. Prior work on the use of disentangled variational autoencoders in reinforcement
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learning environments has shown the benefits of state representations where each latent

variable encodes a different property of the environment (Higgins et al., 2017b). This

may simplify the encoding and make it easier for policy learning.

2.3 Evolutionary Algorithms

Evolutionary algorithms are a class of black box optimisation techniques inspired by

Darwin’s (1859) theory of evolution. They evolve a population of candidate solutions

using operators based on biological evolution mechanisms including mutation, crossover,

and selection. Candidate solutions are evolved iteratively in generations, within which

each candidate’s fitness is evaluated and used to assess their performance towards some

goal. Therefore, the goal of an evolutionary algorithm becomes to evolve solutions which

maximise fitness and thus performance. Individuals with the highest fitness are usually

more likely to survive each generation and be used to create offspring to populate the

next generation. Through this mechanism, the search is guided towards areas of the

search space of higher fitness, though maintaining a population also allows for broad

exploration and helps to prevent finding locally optimal solutions.

2.3.1 Classes of Evolutionary Algorithms

For brevity, we only introduce three main classes of evolutionary algorithms which have

been utilised in the prior work on evolutionary reinforcement learning discussed in our

literature review (Chapter 3). Evolutionary algorithms themselves are part of a family

of wider biologically inspired algorithms under the umbrella of evolutionary computing,

such as swarm intelligence algorithms. It is worth noting that while initially these classes

of algorithms may have developed independently, there is now a substantial blur in how

the terms and definitions are used today.

2.3.1.1 Genetic Programming

Genetic programming algorithms are methods for evolving programs or functions that

were first published in the 1980s (Cramer, 1985). Initially, the population is seeded

with randomly generated programs. Traditionally, programs are represented as syntax
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Figure 2.7: An example of a function represented by an abstract syntax tree.

trees that are evaluated recursively, as shown in 2.7. Using a syntax tree representation,

mutation may take the form of changes to node operators or values, or additions to or

deletions from the tree. Crossover operations might include switching subtrees between

parents.

2.3.1.2 Evolution Strategies

Evolution strategies (ES) (Rechenberg, 1973) is an algorithm for real-valued function

optimisation. Specifically, the algorithm seeks to optimise a vector of real values θ that

parameterise some function f . For example, these parameters could be the weights and

biases of a neural network.

The ES algorithm starts with a random set of parameter values. In its simplest im-

plementation, a population of N individuals is created by producing N random per-

turbations of θ. Each random perturbation is created by applying a small amount of

Gaussian noise with a mean of zero and some standard deviation σ (De Jong, 2006) to

each parameter, i.e.

θi ← θi + εi (2.11)

where εi ∼ N (0, σ). Each individual is then evaluated, and an updated parameter

vector θ′ is defined as the weighted sum of the perturbed parameter vectors, where each
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weight is proportional to the fitness of the individual. This process repeats, iteratively

optimising the parameters of the function. Both vanilla ES and a popular extension,

Covariance Matrix Adaption ES (CMA-ES) (Hansen and Ostermeier, 1996), are used in

evolutionary reinforcement learning methods covered in the literature review.

2.3.1.3 Genetic Algorithms

Genetic algorithms developed as application-independent evolutionary algorithms, un-

like evolution strategies, which was designed for real-valued function optimisation, and

genetic programming, which was designed for evolving programs. The simplest form

of genetic algorithms encodes genomes as a fixed-length binary string. Using this rep-

resentation, mutations to parents can be performed as random bit flips of genes, and

crossover operators defined as swapping substrings of each parent. Two simple crossover

operators are 1-point and 2-point crossover. For 1-point crossover, a single point in the

genome is chosen at random, and the substrings of each parent genome after this point

are swapped. For 2-point crossover, two points in the genome are chosen, and the genes

between these two points are swapped. The specifics of the genome encoding scheme

depend on the application, i.e. the solution (or phenotype) that the genomes encode.

The genome encoding also influences the mutation and crossover operators that are ap-

plied. In the next section, we describe a specific genetic algorithm for optimising neural

networks.

2.4 Neuroevolution and the NeuroEvolution of Augment-

ing Topologies (NEAT) Algorithm

Neuroevolution is the term used to describe the use of evolutionary algorithms to opti-

mise neural networks. In our work, we focus on the use of one neuroevolution method,

NeuroEvolution of Augmenting Topologies (NEAT) (Stanley and Miikkulainen, 2002),

that optimises both the weights and topology (i.e. architecture) of neural networks. It

has been shown to be a powerful and popular algorithm that has been used for many

applications. There have also been many extensions proposed for NEAT that expand

the usefulness of the algorithm to other applications. These include HyperNEAT (Stan-

ley et al., 2009), FS-NEAT (Whiteson et al., 2005), CoDeepNEAT (Miikkulainen et al.,
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2019) and rtNEAT (Stanley et al., 2005), among many others. Since NEAT is the al-

gorithm that we use to evolve policy networks for Atari games, it is important that we

provide an overview of how NEAT operates.

NEAT is designed to evolve neural networks from minimal structures. The initial pop-

ulation consists of minimal networks that contain only input, bias, and output nodes.

From this starting point, the networks are gradually optimised and complexified through

mutation and crossover. By starting minimally, NEAT is always searching through fewer

dimensions than other topology and weight evolving, and purely weight evolving (i.e.

fixed-topology) algorithms, which offers a performance advantage. There are several

important features of NEAT that enable the efficient evolution of solutions. These are

discussed below. However, NEAT is a complex algorithm with too many components

and details to discuss in detail here. For a full description of the NEAT algorithm,

readers are directed to Stanley and Miikkulainen (2002).

2.4.1 Genome Encoding

NEAT uses a direct encoding scheme to encode the genomes. A direct encoding scheme

directly encodes the parameters of the neural network. Genomes consist of node and

connection genes. Each connection gene contains the input and output nodes for that

connection, the connection weight, a Boolean value that indicates whether or not that

connection is enabled, and an innovation number. The node genes specify the type of

each node (input, bias, or output) and the activation function for each node.

NEAT encodes networks using variable length genomes that differ in length depending on

the number of connections and nodes in each network. As the genomes grow, it becomes

difficult to identify matching genes, which is crucial for encouraging productive offspring

to be produced during crossover. Even in small networks, randomly crossing over genes

results in large numbers of degenerate offspring and slows down the search. To alleviate

this issue, each time a new connection is added it is associated with an innovation

number. A global record of each mutation (identified by an innovation number) is

kept so that when an identical mutation occurs down the line, it can be matched up

accordingly.
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2.4.2 Speciation

Motivated by the fact that networks need time to make use of new structural additions,

NEAT speciates the population to protect topological innovations. During the repro-

duction phase of the algorithm, each species is allocated a certain number of offspring

relative to the fitness of that species. This means that individuals only have to compete

within their niche, rather than against others that have had more time to mature and

be optimised. To accomplish this, genomes are grouped into species using a genomic

distance function and a distance threshold. If the distance between two genomes is less

than the threshold, they are considered members of the same species and compatible for

crossover.

The genomic distance δ used in NEAT is specified in the equation below:

δ =
c1E

N
+
c2D

N
+ c3W (2.12)

This is a function of the number of excess (E) and disjoint (D) connection genes and the

average weight difference (W ) between the two genomes. The coefficients c1, c2, and c3

are hyperparameters that specify the relative importance of each of these components

in the distance between the genomes. The term N can be used to normalise the disjoint

and excess gene terms by setting it equal to the size of the larger of the two genomes,

but in practice it is often set to one.

2.4.3 Reproduction

The population of networks is evolved through a combination of mutation and crossover.

After the fitness evaluations of networks in the current population have been performed,

each species is assigned a number of offspring based on the fitness of its members. We

explain the mutation and crossover operators used to produce the next generation of

individuals below.
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Figure 2.8: A visualisation of the add node mutation operator for NEAT

2.4.3.1 Mutations

To create offspring, NEAT performs structural and weight mutations. To evolve the

topology of the networks there are two structural mutations that are performed in

NEAT. The first mutation is the add connection mutation. This mutation selects two

nodes randomly from the node genes and adds a connection between them. The second

mutation is an add node mutation that randomly selects a connection gene to split and

add a node between. For the add node mutation, the selected connection to be split

is disabled, a node is added, and two new connections (one going into the new node

and one going out of the new node) connecting the input and output nodes of the old

connection via the new node are added. This process is shown in Fig. 2.8. The old

disabled connection is shown dashed in grey. The new connection leading into the new

node is assigned a weight of one, while the new connection leading out of the new node is

assigned the weight of the disabled connection. This is done to minimise the disruption

to the network.

As well as structural mutations, weight mutations are also performed. For each mutated

offspring, the weights of the offspring are probabilistically perturbed. The range and type

of the distribution the perturbations are drawn from is user defined. Each connection

is also probabilistically replaced by a new value to occasionally introduce more severe

mutations.

2.4.3.2 Crossover

The innovation numbers assigned to genes allows us to identify matching genes be-

tween genomes. Furthermore, the speciation of the population ensures that only similar
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Figure 2.9: A visualisation of the crossover operation between two parent genomes.
Each box represents a connection gene, labelled by innovation number. Parent 2 is
fitter, and therefore the excess and disjoint connection genes are inherited from them.
Genes with matching innovation numbers are inherited randomly from either parent.

genomes are mated together (though there is also a small probability that inter-species

crossover is performed). The crossover operation between genomes is performed as fol-

lows. First, the two parents are aligned using the innovation numbers of the connection

genes. Non-matching genes that lie within the range of the other parent are called dis-

joint genes. Non-matching genes that lie outside the range of the other parent are called

excess genes. The offspring is created by traversing the connection genes of the fitter

parent. Non-matching genes are inherited from the fitter parent, and matching genes

are randomly chosen from either parent. An example of the crossover operation is shown

in Fig. 2.9.

2.5 Deep Reinforcement Learning

Reinforcement learning (RL) is a formal framework for solving sequential decision-

making problems (Francois-Lavet et al., 2018). Instead of learning from a set of labelled

examples (as is the case for supervised learning), or learning patterns or relationships

from unlabelled examples (as is the case for unsupervised learning), for RL, models,

known as agents, learn through interaction with an environment. Deep RL is the com-

bination of deep learning (i.e. deep neural networks) and reinforcement learning. This

combination is useful for solving problems with high-dimensional input spaces, such as
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vision-based tasks, because neural networks (and in particular convolutional neural net-

works) can learn to extract features, removing the need for manual feature construction.

Prior to the development of deep RL techniques, designing features for reinforcement

learning problems was a challenging issue and limited the general applicability of tradi-

tional RL methods.

2.5.1 Reinforcement Learning Basics

A traditional RL system consists of six elements (Sutton and Barto, 2018):

• An agent that is able to perform actions that cause some change in the environ-

ment. Whose goal it is to maximise a reward (see below) over the long term.

• An environment within which the agent is learning to solve the problem. This

could be a simulation or the real world. The environment may have discrete or

continuous action and state spaces that define the actions the agent may take and

the state of the environment, respectively.

• A policy which defines the action the agent should take given the state of the

environment. This encodes a strategy and dictates how the agent behaves.

• A reward signal that represents the goal of the problem and rewards the agent for

progress towards the goal. In the context of video games, the reward signal is often

some function of the agent’s score. The reward signal may be dense, meaning that

the agent receives a reward frequently (e.g. for every action) or sparse, meaning

that the agent receives a reward only after many actions.

• A value function that estimates the long-term value of each state or state/action

pair, i.e. it provides an estimate of the total reward that can be accumulated from

each state in the future or an estimate of the total reward that can be accumulated

by performing an action from each state.

• A model (optional) that models the environment and allows the agent to make

predictions about how the environment will change given the state of the environ-

ment and actions performed by the agent. Agents that learn by learning a model

of the environment are called model-based agents, whereas those that do not use

a model are called model-free agents.
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Figure 2.10: The basic agent interaction loop in reinforcement learning. Modified
from Francois-Lavet et al. (2018).

The agent’s interaction with the environment can be described in the form of an inter-

action loop, as shown in Fig. 2.10. Considering a problem with discrete action and state

spaces, first of all, the agent performs an action for the current time step t from a set of

discrete actions at ∈ A. This causes some change in the state of the environment from

st ∈ S to st+1 ∈ S. The agent receives an observation from the environment ωt+1 ∈ Ω

that represents the updated state of the environment st+1 and a reward rt ∈ IR that

provides the agent feedback on their action at.

2.5.2 Value-Based Methods

Value-based RL methods aim to approximate the value function. One of the simplest and

most popular algorithms is the Q-learning algorithm (Watkins, 1989). In its most basic

form, this algorithm aims to learn a lookup table Q(s, a) that contains the expected

total reward that can be gained by performing action a at state s. Since the table

contains an entry for every state-action pair, in this form, Q-learning does not scale

well to problems with high-dimensional state and/or action spaces. To alleviate this

issue, fitted Q-learning algorithms (Gordon, 1996), use a function approximator with

parameters θ, such as a neural network, to approximate the value function Q:

Q(s, a;θ) (2.13)

Arguably, the most popular value-based deep reinforcement learning method, which has

spawned many variants, is the deep Q-network (DQN) algorithm (Mnih et al., 2015).
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This was the first method to train agents that achieved superhuman performance in a

number of Atari games from raw pixels (Mnih et al., 2015). DQN was used to approxi-

mate the value function using a convolutional neural network (§2.1.2). This network is

trained to learn the expected total reward of each action, given the current state of the

environment. The policy of the agent is derived from the value function as:

π(st) = arg max
at∈A

Q(st, at;θ) (2.14)

2.5.3 Policy Gradient Methods

Value-based methods derive the policy from an approximation of the value function (see

Eq. 2.14). This causes problems when the action space is large or continuous (Sutton

and Barto, 2018). To address this issue, policy gradient methods learn to approximate

the policy function π directly, instead of learning a value function:

π(s, a;θ) (2.15)

First proposed by Sutton et al. (2000), policy gradient methods use gradient ascent to

optimise a policy network that maximises the expected reward. This approach has the

advantage that it is effective in high-dimensional or continuous action spaces (Peters,

2010). However, policy gradient methods can be inefficient and slow to converge, and

are also prone to converging to local optima (Peters, 2010). Some methods combine

policy and value function learning, such as Actor-Critic methods (Mnih et al., 2016) to

capture the best of both approaches.

2.5.4 Evolutionary Methods

Evolutionary reinforcement learning (ERL) methods are another type of policy-based

methods that search for policies directly in the policy space. With ERL methods, policies

are modified through either mutation or crossover (or both) and are evaluated for entire

episodes at a time. The fitness of each agent is the total accumulated reward during the

episode.
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Evolutionary approaches to solving RL problems avoids several issues present in tra-

ditional reinforcement learning methods. Namely, they avoids the credit assignment

problem and can offer better exploration of the search space. These factors were dis-

cussed in the motivations for our work (§1.1).

2.5.5 Video Games as Reinforcement Learning Benchmarks

The real world is an incredibly complex environment with significant inherent variation

and randomness. If we consider the simple task of learning to pick up a cup, even

in extremely controlled scenarios, there is still complexity introduced in the hardware,

cameras, lighting conditions, and object and agent placement. To compare two methods

fairly, one must exactly replicate the conditions of the previous evaluation, which can be

extremely difficult. With simulations and games, many of these problems are eliminated

or reduced.

Games provide us with simplified environments that are adaptable, consistent, and fully

controllable. At the same time, they provide external validity in that they are designed

to challenge humans. This is especially true for vision-based game playing, because

vision is also an important input when operating in real-world environments, where

access to ground truth information or an underlying state-of-the-world is not available.

Games also provide us with unlimited training data and provide inbuilt mechanisms for

assessing performance, such as scores. It is this combination of qualities that has seen

games rise as a dominant tool in evaluating and comparing RL methods designed to

produce intelligent behaviours.

One of the most popular video game RL evaluation platforms is the Arcade Learning

Environment (ALE) (Bellemare et al., 2013). The ALE provides a standardised RL in-

terface for more than 50 different Atari 2600 games, built on top of the Stella emulator1.

Each game has an discrete action space of 18 actions, which represent all possible com-

binations of inputs on the Atari 2600 controller (a 9-directional joystick and a “Fire”

button). Also offered is a reduced set of “legal” actions for each game that consists only

of actions that actually register as inputs for the game. The ALE provides multiple

different types of observations for agents, ranging from 160 × 210 pixel colour images

of the game screen to the values of the 128 bytes of RAM for the console. The ALE

1https://stella-emu.github.io/index.html

https://stella-emu.github.io/index.html
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can run games at up to 6000 frames per second, which allows for very fast evaluation

and training, and it incorporates a stochastic frame skipping mechanism for introducing

non-determinism into the games.

The OpenAI Gym (Brockman et al., 2016) is another RL evaluation platform for Python

that provides a common interface for many different RL problems, including an interface

for the ALE. Other video game playing RL benchmarks include the General Video Game

AI (GVGAI) framework (Perez-Liebana et al., 2016).



Chapter 3

Literature Review

This chapter discusses prior work in the field of vision-based evolutionary reinforcement

learning (ERL). Although not all of the methods we discuss are suitable for general video

game playing (GVGP), they still provide motivation and inspiration for our research.

As a whole, the discussions in this chapter establish the context around our work and

summarise the current and recent history of vision-based ERL.

The prior work in vision-based ERL can be divided into two categories: purely evolu-

tionary methods, and hybrid methods. Purely evolutionary methods attempt to solve

problems using evolutionary optimisation techniques alone. Hybrid methods combine

evolutionary optimisation methods with other machine learning methods. The hybrid

methods are the closest to our own work. After summarising the prior work in these

two categories, we outline how they motivate our investigations and describe the niche

within which our work sits.

3.1 Purely Evolutionary Methods

The majority of the prior work around vision-based ERL uses purely evolutionary op-

timisation methods. The majority of these focus on neuroevolution, following the in-

creasingly popular trend of using neural networks to solve reinforcement learning (RL)

problems. Like traditional deep RL methods, most ERL methods focus on end-to-end

learning : optimising a single neural network that is responsible for feature extraction,

state representation learning, and policy learning. We start by discussing these methods,

29
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followed by those that use a separated learning approach like our own. Separated learn-

ing methods divide the responsibility of state representation and policy learning between

two separate networks. Finally, we discuss a completely different genetic programming

approach, before moving on to hybrid learning methods.

3.1.1 End-to-End Neuroevolution

We described earlier that optimising the large networks required for feature extraction,

state representation, and policy learning is problematic for evolutionary algorithms and

limits their effectiveness. However, this has not prevented some success. Broadly, end-to-

end neuroevolution methods that have been used for vision-based RL can be categorised

by their use of direct or indirect genome encoding. Direct encoding methods encode

the parameters of solutions (e.g. neural networks) directly, whereas indirect encoding

methods encode the parameters of solutions indirectly to reduce the size of the genomes.

3.1.1.1 Direct Encoding Methods

Hausknecht et al. (2014) published some of the first work evaluating neuroevolution

as a potential technique for general Atari game playing. They assessed the ability of

three different direct encoding methods — conventional neuroevolution (a simple genetic

algorithm that uses crossover and mutation to modify the network weights), covariance

matrix adaptation evolution strategy (CMA-ES, Hansen and Ostermeier (1996)), and

neuroevolution of augmenting topologies (NEAT, Stanley and Miikkulainen (2002)) — to

evolve feed-forward policy networks for 61 different Atari games. Two of these methods,

conventional neuroevolution and CMA-ES, evolve the weights of fixed topology networks,

while NEAT evolves both the weights and topology of networks1. They also compared

these methods against an indirect encoding method, HyperNEAT (Stanley et al., 2009).

Their HyperNEAT results are discussed in the next section. For their vision-based

experiments, they used the Arcade Learning Environment (ALE) (Bellemare et al.,

2013). The algorithms were used to evolve networks that took as input downsampled

8× 21× 16 pixel images, with one channel for each of the eight colours in the SECAM

colour palette. They reported that none of the three methods were able to evolve

solutions for any of the games using these inputs.

1NEAT is described in §2.4.
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Despite the failure of conventional neuroevolution and CMA-ES to evolve solutions for

Atari games from raw pixels. Salimans et al. (2017) and Such et al. (2017) later showed

that similar methods, when operated on a larger scale (parallelised across 1,440 and 730

CPU cores, respectively), were indeed able to evolve solutions. Salimans et al. (2017)

showed that evolution strategies (ES), described in §2.3.1.2, is an effective approach to

optimising the weights of deep neural networks for hard reinforcement learning tasks.

Using ES, they produced agents that matched the performance of agents trained using

gradient-based optimisation on most Atari games tested. They found their implementa-

tion, OpenAI ES, to be data efficient, requiring only between 3-10 times as much data

to match the performance of the Asynchronous Advantage Actor-Critic (A3C) (Mnih

et al., 2016) algorithm on 23 of the 51 Atari games tested. They also found OpenAI ES

to be qualitatively better at exploration on a non-vision-based 3D humanoid locomotion

task using the MuJoCo physics simulator (Todorov et al., 2012), learning a variety of

walking gaits not observed through training with gradient-based methods.

Shortly after Salimans et al. (2017) found ES to be effective at optimising deep neural

networks to solve hard RL problems, Such et al. (2017) also showed that simple genetic

algorithms are a competitive alternative to gradient-based techniques. They compared

the performance of networks optimised using a genetic algorithm (Deep GA), to networks

optimised through gradient-based methods on a selection of Atari games. Across the

13 games tested, networks evolved using Deep GA outperformed networks trained using

DQN (Mnih et al., 2015), A3C and OpenAI ES on three games. Further, the training

time for networks using Deep GA was drastically lower than both DQN and A3C, due

to the ability to exploit parallelism when evaluating individuals in each generation. The

networks evolved using Deep GA took between one and four hours to train, depending

on the level of parallelism, compared to approximately four days and between seven and

ten days for A3C and DQN respectively (Such et al., 2017). Deep GA and OpenAI

ES have since been shown to also successfully evolve agents capable of driving in the

Donkey Car Simulator as well (AbuZekry et al., 2019).

One of the difficulties in scaling neuroevolution to deep neural networks is that only small

perturbations can be made to the network weights to ensure that existing functionality

is not broken by the mutations. This limits the speed with which evolution can proceed,

resulting in neuroevolution often being far less efficient than gradient-based training al-

gorithms. Lehman et al. (2018), and Tymchenko and Antoshchuk (2019) both proposed
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techniques to alleviate this issue and improve the effectiveness of weight mutations and

crossover operations, respectively.

Lehman et al. (2018) coined the term “safe mutations” to describe mutations that are

strong enough to allow evolution to progress, but not so strong as to break any existing

functionality in the evolved networks. They proposed two types of safe mutation oper-

ators for perturbing the connection weights of neural networks, safe mutation through

rescaling (SM-R) and safe mutation through gradients (SM-G), that scale weight per-

turbations relative to the effect that they have on the network’s outputs. Both methods

scale the magnitude of weight perturbations so that the divergence in the network’s

outputs (across a small sample of recent examples) between the parent and child remain

within some threshold. This threshold replaces the usual mutation rate parameter. SM-

R operates by optimising the magnitude of the perturbations using a simple line search,

at the cost of a forward pass per example. SM-G uses gradient information, at the cost

of an additional backward pass per example. For each weight, the magnitude of each

output’s gradient (with respect that weight) provides an estimate of the sensitivity of

the output to that weight, which is used to scale the perturbation2.

Lehman et al. (2018) evaluated variants of the SM-G operators on a vision-based maze

navigation reinforcement learning task. The weights of a fixed network architecture

with eight convolution layers, two LSTM layers, and an output layer (a total of 20,573

parameters) were evolved using mutation alone. They found that the use of safe mutation

operators lead to significantly shorter times to find solutions and a significant increase

in the proportion of runs in which solutions were found, compared to a control version

that did not use safe mutations.

Tymchenko and Antoshchuk (2019) proposed a safe crossover operator that, as with the

safe mutation operators proposed by Lehman et al. (2018), aims to reduce the likelihood

of degenerate offspring being generated during reproduction. Their method, Layer Blend

Crossover (LBC), linearly interpolates the weights of corresponding layers in the parent

networks according to the fitness of the parents. The interpolation factor is drawn from

a truncated normal distribution with a fixed variance, centred around the proportion of

the total fitness that is earned by Parent 1. Tying the interpolation factor to the relative

2This is not to be confused with deep RL techniques that use gradient descent and calculate gradients
with respect to reward signals
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performance of the networks has the effect of the fitter parent influencing the weights of

the child more.

In their evaluations using The Open Racing Car Simulator (TORCS)3, Tymchenko and

Antoshchuk (2019) use a simple genetic algorithm with LBC and the SM-R mutation

operator described previously, to evolve the weights of a deep convolutional neural net-

work. They found that their genetic algorithm was able to find good continuous control

policies across a number of different tracks that were competitive against the policies

trained using the Deep Deterministic Policy Gradient (DDPG) algorithm (Lillicrap et al.,

2015). DDPG has been shown to perform very well across a wide range of reinforcement

learning problems (Lillicrap et al., 2015).

3.1.1.2 Indirect Encoding Methods

Stanley et al. (2009) developed a method of neuroevolution called HyperNEAT. This

method uses NEAT (Stanley and Miikkulainen, 2002) to evolve compositional pattern-

producing networks (CPPNs) that indirectly encode the weights of larger neural net-

works. The evolved CPPNs are similar themselves to small neural networks, except for

that they use different activation functions (e.g. a combination of Gaussian, sine, or

linear functions) for the neurons. The composition of these basic functions allows them

to generate spatial patterns in the network weights with symmetry (through the use of

symmetric functions, such as Gaussians) and repetition (using periodic functions, such as

sine). For a fixed neural network node layout, the CPPNs output a connection weight

for every possible connection (including recurrent connections). Using HyperNEAT,

Stanley et al. (2009) were able to evolve functional million-connection networks.

Hausknecht et al. (2014) evaluated the ability of HyperNEAT to evolve Atari play-

ing agents that learn from raw pixel inputs (alongside the other algorithms mentioned

earlier). Using the ALE, they evolved agents for 61 Atari games and found that Hy-

perNEAT was able to evolve solutions that beat average expert human scores on three

games: Bowling, Kung Fu Master and Video Pinball. Their evolved agents learnt from

the downsampled 8× 21× 160 pixel images encoded using the 8-colour SECAM colour

palette described earlier.

3http://torcs.sourceforge.net/

http://torcs.sourceforge.net/
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Wavelet-Based Encoding (WBE) (van Steenkiste et al., 2016), is an alternative indirect

encoding scheme for neuroevolution, inspired by wavelet-based lossy image compression

methods. This encoding scheme reduces the search space by using wavelets (signal

processing functions for decomposing signals into separate frequency components) to

create a mapping between the gene space (wavelet coefficients) and the weight space.

Instead of storing and directly evolving the weights of the networks in the genomes, the

wavelet coefficients for the low-frequency components are stored and evolved. These

describe the most important information in the weights. Lossy reconstructions of the

network weights are obtained by convolving the inverse wavelet transforms over the

weight matrices of the networks. As with HyperNEAT, this means that their method is

able to preserve spatial relationships between the network weights.

van Steenkiste et al. (2016) evaluated WBE on a set of five Atari games (Atlantis,

Gravitar, Phoenix, Seaquest, Space Invaders, and Q-Bert) using the ALE. The images

from the ALE were converted to greyscale and downsampled to 105 × 80 pixels. They

compared the performance of WBE against direct evolution in the weight space, and

the scores reported by Hausknecht et al. (2014) using HyperNEAT. They used a fixed

network architecture with a single 100 neuron, fully recurrent hidden layer and a fully

connected output layer and evolved the wavelet coefficients using CoSyNE (Gomez et al.,

2008). They reported that evolution using WBE outperformed direct evolution (using

CoSyNE to directly evolve the weights of the network) in all six games, and HyperNEAT

in five of the six games. Despite the ability of HyperNEAT and WBE to evolve high-

performing Atari agents, neither of these methods evolve both the weights and topology

of the policy networks. Therefore, they do not harness the full potential and benefits of

using neuroevolution to evolve policy networks.

3.1.2 Separated Neuroevolution

Though most of the work exploring separated learning methods use neuroevolution for

policy learning and other methods for state representation learning (and hence are dis-

cussed with the other hybrid learning methods), an outlier is the work by Koutńık et al.

(2014). They proposed a method in which the weights of two separate networks, a convo-

lutional neural network for state representation learning and a smaller recurrent neural

network for policy learning, are evolved independently. First, the weights of a small
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CNN are evolved using images collected by manually exploring the environment. The

weights are evolved using CoSyNE (Gomez et al., 2008), to maximise the variation in

the feature vectors produced by the network. The fitness function used is the sum of the

minimum and mean pairwise Euclidean distance between the produced feature vectors

for the images. Following this, the weights of a small recurrent neural network controller

are evolved, again using CoSyNE, that uses as input the feature vectors produced by

the CNN instead of raw observations from the environment.

Koutńık et al. (2014) evaluated their method on a driving task using the TORCS racing

simulator. The inputs to the networks were 64 × 64 pixel images. They found that

agents trained in the way described above were able to complete a lap of the test circuit

and continue to drive without crashing. These results are encouraging for our research,

because they provide evidence that for a single domain, sufficient state representations

can be learnt (without input from the policy learner) that enable policy learning. One

of the intentions of our research is to see if sufficient representations can be learned in

an online setting (i.e. alongside policy learning) for multiple different domains (games).

3.1.3 Genetic Programming

The methods presented in the previous two subsections use neural networks approximate

policy functions that decide which action to take at each time step. However, Kelly and

Heywood (2017) proposed a fundamentally different, genetic programming framework

for vision-based reinforcement learning called Tangled Program Graphs (TPG). This

method evolves “teams” of programs that are connected to form a program graph that

decides which action to take at each time step. An example structure of an evolved

TPG policy is displayed in Fig. 3.1. Each team consists of a number of programs (a

sequence of instructions composed of linear operations) that operate on the inputs or

internal registers (memory). Each program outputs a real value, and is associated with

an action the agent can perform or another team. The initial population of teams are

initialised with a small number of programs that are each linked with an action. Links

to other teams or different actions arise through mutations, leading to the emergence

of multi-team graphs over time. At each time step, the program graph is traversed to

choose the agent’s action. For each team, the deployed program is the one with the

highest output.
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Figure 3.1: A simplified example of the evolved TPG policy drawn by Kelly and
Heywood (2017).

TPG was evaluated on the 20 Atari games that DQN (Mnih et al., 2015) failed to train

agents that surpass human-level performance. For their evaluations, the input frames

were preprocessed and reduced to a 1344-dimension vector using a screen quantization

procedure. This procedure took the frames provided by the Arcade Learning Envi-

ronment (Bellemare et al., 2013), encoded in the 8-colour SECAM colour space, and

subdivided them into a 42 × 32 grid. Each cell in the grid was described by a single

byte, in which the bits encoded the presence of one of the eight colours in the cell.

The final 1344-dimension vector consisted of the decimal values for each cell byte. This

preprocessing is the most extensive of all the methods described, and is heavily reliant

on certain properties of the Atari domain, severely limiting the generalisability of this

method to other domains.

In their evaluations, Kelly and Heywood (2017) compared the performance of TPG per-

formed against scores reported for DQN (Mnih et al., 2015) and HyperNEAT (Hausknecht

et al., 2014). The TPG agents achieved higher scores in 14 of the 20 games used in their

evaluations and surpassed expert human scores (Mnih et al., 2015) in seven of those.

They also found that the evolved TPG solutions were far less complex than these com-

peting neuroevolution methods. The average number of instructions executed per time
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step for the evolved TPG agents ranged from 116 and 1036 (depending on the game),

compared to the > 800,000 weight calculations performed by DQN and HyperNEAT

(Kelly and Heywood, 2017). However, while the final polices were less complex, the

evolutionary runs to evolve the TPG agents were very long, lasting a maximum of two

weeks each.

3.2 Hybrid Methods

The methods presented thus far all use purely evolutionary approaches to solving RL

problems. However, much like our proposed method, others have proposed methods

that combine neuroevolution with other approaches to harness the respective benefits of

both. We call these hybrid methods.

Most of the hybrid methods proposed are separated learning methods that separated

state representation and policy learning. Before discussing these methods, however, we

first describe an end-to-end learning method.

3.2.1 End-to-End Learning

An approach to incorporating gradient information into the evolutionary search was

taken by Khadka and Tumer (2018). Their method uses a population of networks evolved

using a simple evolutionary algorithm to generate diverse data to train an agent using

the actor-critic method A3C (Mnih et al., 2016). The actor-critic network is trained in

parallel to the evolutionary population, and periodically injected into the population to

provide potential guidance. The idea behind this technique is that if the policy gradient

trained network is better performing than most agents in the population at a given

time, then it will be selected as a parent of the next generation, thus incorporating the

gradient information into the evolutionary search. Compared against popular state-of-

the-art pure policy gradient methods DDPG (Lillicrap et al., 2015) and PPO (Schulman

et al., 2017), and a simple evolutionary algorithm similar to Deep GA, their method

consistently outperformed each method, showcasing it’s ability to capture the best of

both worlds. Their method also took only around 3% longer to run on average than

DDPG (Khadka and Tumer, 2018).
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3.2.2 Separated Learning

To alleviate the difficulties of evolving networks with large input spaces, but still reap

the benefits of evolutionary approaches, some researchers have explored compressing the

input space automatically before evolving networks which learn instead from this com-

pressed input space. This is the same as the method proposed by Koutńık et al. (2014)

(§3.1.2), except for that the methods discussed here use alternatives to evolutionary

algorithms to optimise the compressors. This explicit separation of feature extraction

and behaviour learning is what we refer to as a compressor-controller agent model.

As far as we are aware, the first occurrence of automatic input space compression was

the work by Cuccu et al. (2011). They employed a vector quantisation algorithm to

compress 15 × 30 px images (450 inputs) from a vision-based version of the mountain

car task into a smaller feature vector of 8 inputs. This feature vector was in turn used

as the input for a recurrent neural network (RNN) controller. By reducing the number

of inputs, the controller is far smaller than it would otherwise need to be, and the

weights were successfully evolved using Separable Natural Evolution Strategies (SNES)

(Wierstra et al., 2014). Although more modern techniques, such as those discussed in

§3.1.1.1, would likely be able to solve this task without compression, SNES was not.

Another technique which divides that task into low-dimensional representation learning

and behaviour learning and addresses this problem is that of Alvernaz and Togelius

(2017). They propose a compressor-controller architecture that uses an autoencoder

to learn a compressed representation of game images and evolves controller networks

using CMA-ES (Hansen and Ostermeier, 1996), with the compressed representation as

their input. The shared experience of agents, i.e. the images they generate, is used to

periodically refine the compressor and improve the compressed representation. The idea

behind their work was that as the agents learn they will encounter new and varied game

states, which can be used to further train the autoencoder, and that as the autoencoder

improves the agents will be able to learn better behaviour from a better representation.

This way, both the training of the agents and the learning of a compressed representation

proceed in tandem. Their method was tested on a health-pack gathering task in the

VizDoom environment (Kempka et al., 2016). Despite reducing the dimensionality of the

inputs for the evolved behaviour generating networks, they did not evolve the topology

of these networks, only the weights. They also did not experiment with the size of
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the autoencoder bottleneck (the compressed representation). They used all images that

were reproduced with higher than a certain mean-squared error (MSE) threshold in their

training set for the autoencoder.

Despite success in being able to reduce the input space to evolve smaller controllers, little

research has been conducted to utilise this to harness the benefits of evolving topology.

As far as we are aware, the only work to have pursued this is that of Poulsen et al.

(2017). They proposed a different approach for allowing smaller behaviour-generating

networks to learn to play a first-person shooter game from raw pixel inputs. They

trained a deep convolutional neural network in a supervised fashion using ground truth

information from the game engine itself to learn a compressed feature vector representing

the current game state. They experimented with learning both an angular representation

of the angle between the agent and the target and a visual partitioning representation

which specifies the position of the target within the image. The behaviour-generating

networks were also trained on ground truth representations based on game engine data,

but at evaluation time were evaluated using the learned representations. Poulsen et al.

(2017) used NEAT (Stanley and Miikkulainen, 2002) to evolve the topology and weights

of the behaviour-generating networks. Due to the requirement of game engine data

to train the compression network in a supervised fashion, their technique would not

generalise well to other simulation or game tasks where this data is unavailable, and for

the same reason presents a problem when moving from games to tasks in the real world.

Because of the use of game-specific knowledge, Poulsen et al.’s (2017) technique is not

as applicable to the task of general video game playing (GVGP).

Finally, Ha and Schmidhuber (2018) developed a model-based reinforcement learning

method that trains agents that consist of three components: a compressor, a world

model, and a controller. To compress the observations from the environment, they

use a variational autoencoder (VAE) to learn compact encodings. A Mixture Density

Network combined with a recurrent neural network (MDN-RNN) (Graves, 2013) is then

trained to predict the compact encodings produced by the VAE, given the encoding at

the current time step, the action taken, and the RNN hidden state on a set of roll-outs.

This MDN-RNN is the world model. Finally, having trained both the VAE and MDN-

RNN, a linear controller network is evolved using CMA-ES that that takes as input the

compact encoding produced by the VAE and the hidden state of the MDN-RNN.
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In their evaluations, Ha and Schmidhuber (2018) evaluated their method in two OpenAI

Gym (Brockman et al., 2016) environments, a top-down car racing simulator (CarRacing-

v0) and a 3D VizDoom environment (DoomTakeCover-v0). They found that their agents

were able to achieve scores that surpassed the threshold beyond which the environments

are considered solved, outperforming traditional deep reinforcement learning methods,

such as DQN (Mnih et al., 2015) and A3C (Mnih et al., 2016). In each of these envi-

ronments, the agents learned from 64 × 64 pixel RGB images. For car racing, the VAE

learned a latent representation of 32 dimensions, that was increased to 64 dimensions

for the VizDoom task. For the car racing experiments, they also found that the agent

was able to learn good policies without using the world model, but did not perform as

well as the full agent.

3.3 Key Findings from Prior Work

The downside of the end-to-end learning approaches attempted in the past are that they

are only able optimise the weights of fixed topology networks. Hausknecht et al. (2014)

showed that NEAT, an commonly used algorithm that evolves both the weights and

topology of networks, is unable to scale to vision-based reinforcement learning domains.

The downside of the previous separated learning approaches by Cuccu et al. (2011)

and Koutńık et al. (2014), Poulsen et al. (2017), and Ha and Schmidhuber (2018) is

that the compressor is trained offline before the evolution of the behaviour controlling

network. This introduces the problem of requiring training data to be collected for this

training ahead of time, either manually or by random agents. The problem with manual

collection, as we discuss later in our state representation learning experiments (§5.2), is

that it is infeasible to collect data for a large number of environments, hampering the

general applicability of such methods. The problem with random agent collection is that

in hard to explore games, random agents will not explore large areas of the state space,

meaning that the models and encodings learnt may not generalise well to unseen, later

game states and therefore hamper the ability of the agent to perform well upon reaching

these conditions. Poulsen et al. (2017) showed that NEAT can be scaled to domains

with high-dimensional inputs, but the caveat to their work is that the representations

used to train the NEAT agents were both trained offline, and in a supervised manner,

making their method unsuitable for GVGP as it requires the collection of labelled data
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for each new environment. Finally, although Alvernaz and Togelius (2017) train the

compressor and controller online simultaneously, they still evolve the weights of a fixed

topology network, again, not harnessing the full benefits of neuroevolution.

Our method is different to those proposed in prior work in that it is the only method

that combines (a) simultaneous compressor and controller training, similar to end-to-end

learning approaches, (b) topological evolution for the controller, and (c) training of the

compressor in an unsupervised manner. Furthermore, we investigate the relationship

between the size of the learnt latent space encodings and the quality of the learnt encod-

ings, something that none of the prior work has investigated. It is conceivable to think

that the density of the input space, i.e. the possible variation in game images, and the

nature of the game, e.g. 2D or 3D, may influence the required bottleneck size.

Based on our review of prior work on evolutionary vision-based reinforcement learning,

we have identified the following key findings which motivate our research:

• Using raw pixels, the input space is too large to evolve both the weights and

topology of neural network agents using current methods.

• Prior methods that compress the image before passing it to evolved networks

show promise but do not yet compete with the state of the art, nor have they been

thoroughly evaluated for GVGP.



Chapter 4

AutoEncoder-augmented NEAT

The previous chapters provide the motivation and justification for our pursuit of re-

inforcement learning (RL) method in which state representation and policy are learnt

simultaneously by two separate networks. This chapter first and foremost describes our

proposed method for achieving this, AutoEncoder-augmented NeuroEvolution of Aug-

mented Topologies (AE-NEAT). We begin by outlining the design of the agents that

are trained using AE-NEAT, before describing the details of state representation and

policy components. After this, we describe the details of how agents are trained using

AE-NEAT.

In addition to describing AE-NEAT, this chapter also introduces two important aspects

of the evaluations that were performed to assess AE-NEAT, which are presented in

chapters 5, 6, and 7. The first is the Atari Annotated RAM Interface (AtariARI) (Anand

et al., 2019), which is used to independently evaluate both the state representation

and policy learning components of AE-NEAT. The second is the common set of games

that are used throughout the remainder of the thesis to evaluate both these individual

components and the overall effectiveness of AE-NEAT.

4.1 Agent Design

The agents trained using AE-NEAT follow the same compressor-controller design utilised

by other methods discussed in §3.1.2 and §3.2.2. For the agents trained using AE-NEAT,

the compressor and controller are two separate neural networks. The interaction between

42
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Figure 4.1: The design of our agents and the function of each component within the
interaction loop with the environment.

the compressor and controller networks is as follows. At each time step, an observation,

which is an image of the game screen, is provided by the environment. This image is first

passed through the compressor, which creates a compact state representation from the

image. This compact state representation is then fed to the controller, which decides the

action taken by the agent. This loop continues until the end of the episode is reached.

Fig. 4.1 shows a high-level representation of this design and the responsibility of each

component within the interaction loop. The key difference between this interaction loop

and the basic RL loop described in §2.5 is that agents perform a two step process to

decide their actions.

There are a number of benefits gained through this separated agent design. First, it

allows for great flexibility in terms of the methods we can apply for each. Second, it

allows us to clearly evaluate their performance independently and as a whole. Third, it

allows us to harness the benefits of gradient-based and evolutionary-based learning. The

following sections provide a closer look at the compressor and controller components.

4.2 State Representation Learning

In the compressor-controller agent design described in the previous section, the com-

pressor is responsible for learning a compact state representation of the environment.

As well a generating a sufficiently compact set of features from which we are able to

evolve a successful policy network, the other requirement of the encoder is that it must

learn in an unsupervised manner. This is crucial for the development of a general video

game playing (GVGP) agent, as we cannot manually handcraft state representations or
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use game-specific knowledge for each game. To learn compact state representations, we

use the encoder half of an autoencoder.

Autoencoders provide us a powerful unsupervised method for training a compressor

that produces compact representations of the game state, by learning compact repre-

sentations of the images that are ordinarily displayed on screen. As described in §2.2,

autoencoders that rely on a sufficiently small bottleneck and are trained to minimise the

difference between reconstructed and original images alone are known as undercomplete

autoencoders. However, our primary concern is not with the quality of the reconstructed

images, rather that the compressor learns to encode important properties of the data.

From the perspective of policy learning, the important properties may not align with the

important properties for reconstruction. Therefore, we also investigate the use of varia-

tional autoencoders (§2.2.2) that attempt to learn a distribution over the latent variables,

as well as disentangled variational autoencoders (§2.2.2.3) that place greater emphasis

on each of the latent variables encoding different properties. Our hope is that one of

these autoencoder techniques is able to learn adequate state representations to enable

policy learning. The exact type and architecture of autoencoder will be determined em-

pirically via a comparison between different type and architecture combinations. These

experiments are detailed in Chapter 5.

The observations from the environment that are passed to the compressor undergo very

minimal preprocessing. The only preprocessing that is performed is converting the

RGB images output by the environment into single-channel greyscale images. This

differs from the vast majority of reinforcement learning methods assessed on Atari en-

vironments. Typically, most methods both convert the images output by the Arcade

Learning Environment to greyscale and downsample them from their original 210× 160

pixel dimensions to 64 × 64 pixels. Furthermore, most methods rely on frame stacking

to circumvent the problem of partial observability (described in the following section).

They pass not only the current frame but also the previous three frames to the agent at

each time step. Our method does not require this modification, as the policy networks

are able to evolve recurrent connections to deal with partial observability. Our choice

to use full-size frames further strengthens the generalisability of our method, removing

the need for the downsampling step specific to Atari.
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4.3 Policy Learning

For policy learning, we harness the exploration qualities and architectural design benefits

of topology and weight evolving neuroevolution algorithms. Specifically, we use the

NeuroEvolution of Augmenting Topologies (NEAT) algorithm (§2.4). This algorithm

evolves both the weights and topology of networks, starting from minimal structures

consisting only of the input and output nodes. We use NEAT to evolve recurrent neural

network controllers.

Due to the presence of moving objects, most Atari games, including Pong and Breakout,

are partially observable Markov decision processes (POMDPs) when only information

from the current frame is provided with each observation. This is because the speed

and direction of moving objects cannot be determined from a single observation. To

alleviate this problem, a common solution is to include information from the four most

recent frames in each observation and train feed-forward networks (Mnih et al., 2015).

However, this increases the dimensionality of the input space and does not solve the

partial observability problem for games that require a memory of more than four time

steps. Instead, we evolve recurrent neural networks (RNNs) to enable the development

of good policies in partially observable environments.

We evolve RNNs that at each time step propagate the outputs of each neuron forward.

This behaviour was described in §2.1.1. Compared to some RNN implementations, the

initial outputs are not immediately influenced by the inputs, but they do not require

there to be topological ordering of nodes or the specification of whether lateral con-

nections are recurrent. For situations like ours, where the network topology is evolved,

rather than hand-crafted, this reduces the constraints that need to be specified (allowing

for potentially more creative solutions) and overhead in implementation. To evolve the

controller, we use our own implementation of NEAT.

4.3.1 PyNEAT: A Python Implementation of NEAT

PyNEAT, our Python implementation of NEAT, conforms to the NEAT-Python inter-

face (McIntyre et al., 2017), to allow for the reuse of existing reporting and logging

modules. To parallelise the fitness evaluations of the population, our implementation

uses Ray (Moritz et al., 2017).
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Table 4.1: A comparison of the original version of NEAT compared to PyNEAT for
the XOR problem.

NEAT Original PyNEAT

Mean # Generations 35.9 (18.0) 41.50 (18.7)
Mean # Hidden Nodes per Solution 2.7 (1.6) 3.8 (2.2)
Mean # Connections per Solution 10.6 (4.3) 11.82 (4.0)
Success Rate 97 % 95 %

4.3.1.1 Negative Fitness Values

To better fit the Atari domain, we modify NEAT to support negative fitness values.

The original specification of NEAT does not allow for negative values, because positive

values are required for fitness sharing. To avoid this issue, fitness sharing is implemented

using an adjusted fitness value, specified as the difference between the individual’s fitness

and the lowest fitness in the population. This ensures positive values and preserves the

fitness differences between individuals.

4.3.1.2 XOR Verification

To verify the quality of PyNEAT, we applied it to the XOR problem. The XOR problem

requires the algorithm to evolve XOR (“exclusive OR”) networks. Since these networks

require hidden nodes, it is a good test to establish that our implementation can re-

liably grow and optimise additional network structures when they are required. We

followed the same experimental design as Stanley and Miikkulainen (2002) to compare

the performance of PyNEAT against their original implementation of NEAT in C++.

For each implementation, we performed 100 runs using the same hyperparameter values

reported by Stanley and Miikkulainen (2002). Table 4.1 compares the performance

of both implementations. These results show that PyNEAT performs comparably to

their implementation, finding solutions on average in only a slightly longer number of

generations and solutions that are on average only slightly more complex (for reference,

the simplest possible XOR requires only one node). PyNEAT also had a success rate

of only 2% less than the original implementation. These results provided confidence

that PyNEAT is a sufficiently high-quality implementation that could be used for our

experiments.
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4.4 Training Procedure

The combination of reinforcement learning and evolutionary algorithms lends itself to

being a very computationally expensive process. This is the single biggest limiting factor

in our work. To alleviate this issue, we implemented a parallelised training algorithm for

training such agents, depicted in Fig. 4.2, using the Python library Ray (Moritz et al.,

2017) to utilise a cluster of nodes.

During training, the core of the algorithm is performed on the master node. Here, the

population of policy networks is created, and then mutated between generations. Also,

between generations, the autoencoder is trained on the latest images collected during

the agents’ exploration of the games. One of the limiting factors we experience is the

sheer number of images generated during exploration. As we describe later on, a large

population of agents is able to generate potentially tens of millions of frames. Within

our cluster constraints (a collection of machines in the Department of Computer Science

and Software Engineering computer labs) it is infeasible to collect, store and return these

images to a central observation store from where they can be sampled by the master

for training the autoencoder. Instead, sampling is performed by each worker on a per

episode basis. First, the policy network is evaluated for an episode and the observations

generated by the environment are store in memory. Once the episode is completed, these

observations are sampled and only this sample is passed onto the centralised image store.

This achieves two purposes. First, it controls the number of observations that are store,

and second, limits the network traffic and reduces the overall evaluation time of each

policy network by minimising excess data transfer.

Our image store is implemented as an in-memory Redis1 database on the master node.

This provides a fast, low-latency store that removes the need for observations to be

saved and written to disk. It also solves the problem of collating observations from

the distributed workers. The image/observation store is configure to store the latest

N observations generated from the agents. The limiting factor for N is the amount of

available memory on the master node. To train the autoencoder between generations,

a sample of images is drawn from the image store, the autoencoder is refined, and then

when the new population of network is evaluated, the updated encoder is sent with the

policy network to be evaluated.

1https://redis.io/

https://redis.io/
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Figure 4.2: An overview of the the training process for our hybrid agents.

4.5 The Atari Annotated RAM Interface

The Atari Annotated RAM Interface (AtariARI) (Anand et al., 2019) provides RAM

annotations for 22 of the 59 Atari 2600 games supported by the OpenAI Gym toolkit2.

These annotations identify which of the 128 bytes of RAM store values related to infor-

mation displayed on screen, such as the position of the player. These annotations were

created by analysing either commented disassemblies or the source code (where avail-

able) for each game. Through a wrapper for the existing OpenAI Gym interfaces for

each supported Atari game, the RAM values for each state variable are made available

at each time step. For one of these games, Pong, the values provided at each time step

are shown in Fig 4.3.

The interface was designed for assessing the performance of state representation learning

methods that try to learn condensed representations of the game state from the images

displayed on the screen. Such methods are assessed by training a classifier (referred to as

a probe) for each state variable that predicts the value using the condensed representation

2At the time that this experimental work was conducted.
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Figure 4.3: The RAM annotations provided by the Atari Annotated RAM Interface
(Atari ARI) for the game of Pong.

as input. The performance of the classifiers give an indication of the quality of the

encoding of each variable in the learned state representations.

In this work, we use the AtariARI for two purposes. First, we use it to evaluate the

quality of representations learned by autoencoders, and propose several improvements

on the original evaluation procedure. Specifically, we propose the use of regression over

classification for appropriate state variables, and the use of non-linear probes. These im-

provements are proposed in §5.3. Second, we use the compact representations provided

by the AtariARI as a baseline for policy learning using NEAT. By filtering out unim-

portant RAM values, the input space for each game is substantially reduced, removing

excess noise that might otherwise make the task of policy learning more challenging.

For instance, for Pong, the input space is reduced to only eight inputs, a reduction of

93%. To our knowledge, the AtariARI provides the most condensed, high-quality state

representation for many of the supported Atari 2600 games. These uses of the AtariARI

allow us to perform independent evaluations of each of the components in our hybrid

learning method, and shine light on potential deficiencies.

4.6 Game Selection

Although the AtariARI provides gym wrappers for 22 different Atari games, inspection of

the objectives of different games reveals inadequacies in some of the state representations

provided. Due to this, we use only a subset of the supported games in our evaluations.
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We categorise the supported games into three categories: poor, fair and good ; based

on the perceived quality and completeness of the state representations provided by the

AtariARI. Representations that lack key information relevant to the objective of the

game, that is so crucial that we do not reasonably expect an agent to be able to learn a

good strategy from, are classified as poor. Representations that lack some information

about the state of the game, but appear to include enough information to develop an

adequate strategy from, are classified as fair. Finally, games for which the representa-

tion appears to include all information required to learn an optimal strategy, generally

speaking information about all game play components displayed on screen, are classified

as good. Each game is classified by examining game play and comparing the knowledge

required to play the game against the information provided by the AtariARI.

One example of a poor game is Riverraid. The AtariARI representation is classified as

poor for this game, because only information regarding the state of the player (e.g. x

position, remaining fuel) is provided at each time step. The representation does not

include any information about the state of enemies and obstacles, or the locations fuel

tanks for refuelling. Because this information is not provided, we find it unreasonable

to expect the agent to develop an adequate strategy, given that they must avoid the

obstacles and refuel to survive. An example of a fair game is Video Pinball, which

includes information on the location of the ball and position of the paddle, allowing the

agent to keep the ball in play, but it does not include information on the targets the

agent needs to aim for to score points. Finally, an example of a good representation is

the representation provided for Pong, which includes information about all of the objects

displayed in each frame. The state representation for Pong is illustrated in Fig 4.3.

Of the 22 supported games, eight games have poor representations (Hero, Montezuma’s

Revenge, Pitfall, Private Eye, Qbert, Riverraid, Venture and Yars Revenge), eight games

have fair representations (Berzerk, Breakout, Demon Attack, Frostbite, Ms. Pacman,

Seaquest, Space Invaders and Video Pinball) and six games have good representations

(Asteroids, Bowling, Boxing, Freeway, Pong and Tennis). We use only the 14 games for

which the AtariARI provides fair or good representations in our evaluations.
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4.7 Summary

The most important aspects of our hybrid learning method are:

• State representation and policy learning are performed separately, but simultane-

ously. This separation allows neuroevolution methods that evolve both weights

and topology to be applied to domains with large input spaces.

• State representations are learned using an autoencoder that is trained using ob-

servations gathered by the policy networks during evaluation.

• A population of policy networks are learned (evolved) using NEAT, that take as

input the feature vector learned by the encoder half of the autoencoder.

Furthermore, we also identified games that the AtariARI may be insufficient for eval-

uating state representation learning methods, due to missing information that appears

important for learning effective policies. In the next two chapters, we evaluate each of

the state representation and policy learning components independently, before evaluat-

ing the performance of the entire method as a whole in Chapter 7.



Chapter 5

Learning Compact State

Representations

The last chapter provided an overview of the compressor-controller design and training

method for our general Atari playing agents. The agents consist of two separate compo-

nents, a compressor and a controller, that are responsible for state representation and

policy learning, respectively. The role of the compressor is crucial, because, by providing

compact representations for observations, it allows us to scale topology and weight evolv-

ing neuroevolution algorithms to reinforcement learning problems with high-dimensional

input spaces. Fig. 5.1 highlights the role of the compressor in an agent.

This chapter focuses on identifying and subsequently evaluating a suitable autoencoder

model and training method that allows us to train a compressor in an unsupervised

manner, without the need for domain specific knowledge, such as labelled observations.

We start by defining a design space over a number of different types of autoencoders,

network architectures, representation sizes, and loss functions. Following this, we eval-

uate each candidate in the design space by examining both their reconstruction quality

and ability to encode the important state variables identified by the Atari Annotated

RAM Interface (AtariARI). Our aim is to identify a method that balances the trade-off

between representation quality and size. This is crucial for evolving effective game-

playing policies because, although the policy learner requires access to rich information,

the state representations produced by the compressor must also be compact enough to

ensure that the search space is of a manageable size.

52
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Figure 5.1: A recap of the role of the compressor in agents that use a compressor-
controller design.

The first section of this chapter defines the design space of autoencoder configuration

candidates that we evaluated in our search for a suitable state representation learning

method. It also includes a description of a customised loss function we proposed for

improving representation quality. The second part of this chapter details our procedure

for identifying the best candidate from our design space to use moving forward. Finally,

we describe the results of our evaluations and, based on these results, choose a candidate

to use in our overall evaluation of AE-NEAT in Chapter 7.

5.1 Design Space

As we have previously discussed, autoencoders have been used, with great success, as

a method of lossy compression. We define and evaluate a design space of autoencoder

configurations because although their exists some prior work that have evaluated au-

toencoders for representation learning (Anand et al., 2019, Poulsen et al., 2017), there is

a lack of knowledge about the relationship between representation size and other design

factors.

In this section, we describe our autoencoder design space, that is, the search space over

which we search for a suitable model to use moving forward. The following subsections

describe the 3 autoencoder types, 2 architectures, 10 representation sizes, and 2 different

reconstruction error measures we investigate in our design space. This gives a total of

120 models.
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5.1.1 Autoencoder Types

We identified three different types of autoencoders that we thought held promise as

state representation learners: undercomplete (AE), variational (VAE), and disentangled

variational (β-VAE) autoencoders. §2.2 described the differences between each of these

types. We evaluate each of these types of autoencoders as part of our design space.

To recap, each of these types of autoencoders learns a different type of representation.

For undercomplete autoencoders, there are no additional constraints on the represen-

tation learned, other than that it includes the information required to reconstruct the

input. In comparison, variational autoencoders are trained to learn the generating dis-

tribution of the data. This results in a continuous encoding of the inputs, in which

similar inputs are located close to each other in latent space. A further extension of this

is disentangled variational autoencoders. These also try to learn the generating distribu-

tion for the data, but greater emphasis is placed on each variable of the representation

encoding different, independent information.

5.1.2 Architectures

As part of our design space, we test two different encoder/decoder architectures, one

based on the convolutional layers of the DQN network architecture published by Mnih

et al. (2015) that matches the architecture used by Anand et al. (2019), and another

inspired by the results of ResNet (He et al., 2015). These architectures are shown in Fig.

5.2. k and s denote the filter size (i.e. k × k) and stride of the convolution operations

in each layer, respectively.

Our motivation behind the use of the DQN-inspired architecture was the good perfor-

mance of gradient-based reinforcement learning methods that use this architecture, such

as DQN. We wanted to see how well the convolutional layers of this architecture per-

form when trained and assessed independently of the reinforcement learning aspect. The

kernel sizes of this architecture match those of the original paper, while the number of

filters for each layer matches those used by Anand et al. (2019) in their autoencoders

based on this same architecture.

We also trained models that used an alternative architecture, the Small Kernel archi-

tecture, that consists solely of stacks of 3×3 convolution layers. The motivation behind
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(a) The DQN-inspired encoder architecture.
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(b) The Small Kernel encoder architecture.

Figure 5.2: The encoder architectures evaluated in our design space.

this architecture design is that we can achieve the same receptive field size as larger 5×5

or 7× 7 convolution layers by instead stacking two or three 3× 3 convolution layers re-

spectively (Karpathy, 2015), while requiring fewer parameters. Furthermore, the deeper

stacks of convolution layers contain more nonlinearities that allow for more expressive

features to be extracted (Karpathy, 2015). By replacing the larger 8×8 and 4×4 kernel

sizes in the DQN-inspired architecture, the resulting Small Kernel architecture contains

less than half the number of parameters, 2,240 as opposed to 5,984.

Each of the architectures takes as input a single-channel, greyscale 160×210 pixel image.

The DQN-inspired architecture consists of four convolutional layers, each convolving 32,

64, 128, and 64 filters, respectively. The first filters are created by convolving an 8× 8

kernel, the second layers use 4× 4 kernels, while the fourth used a kernel size of three.

The exact dimensions of the resultant filters and kernels, the stride size, and the number

of filters are detailed in Fig. 5.2. In comparison, the Small Kernel architecture has five

layers, all of which use 3 × 3 kernels. The first three layers have 32 filters, while the

last two have 64 filters. All models have a final fully connected layer that connects

the flattened output of the final convolutional layer to a bottleneck of a particular

size. Descriptions of the bottlenecks for undercomplete and variational autoencoders are
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given in §2.2. The decoders of each model are the reverse of the compressors/encoders

described.

5.1.3 Representation Size

One of the largest gaps in the current knowledge on representation learning is how repre-

sentation size affects performance from a policy learning perspective. This is particularly

relevant when considering evolutionary policy learning, where the size of the input space

is essential. To see how representation size affects performance in representation learning

for Atari games, we evaluate each architecture and autoencoder type using 10 different

representation sizes, ranging from 10 to 100 dimensions.

Although others have experimented with one or multiple of these types of architectures

and autoencoder types, to the best of our knowledge, none have evaluated performance

over a set of games, crucial for general video game playing, and none have sufficiently

explored the impact of representation size on the performance of each type. It is quite

conceivable that the relative performance of each type of autoencoder is different at

different representation sizes. Representation size is of greater importance to us because

it directly impacts the ability to evolve policy learners.

5.1.4 Reconstruction Loss Measure

To avoid the need for labelled data that would introduce game-specific dependencies,

the compressor is trained in an unsupervised fashion. As discussed previously, the com-

pressor is simply the encoding half of an autoencoder which is trained to reconstruct

gameplay frames. One issue that this approach raises is that since autoencoders are

typically trained to minimise the overall reconstruction error, small features that are

important for playing the game, but contribute relatively little to the overall reconstruc-

tion error, are lost in the reconstructions. This problem is particularly pronounced in

some Atari games, where critical features for policy learning, such as the location of the

ball for the game of Pong, are only a few pixels in diameter.

One solution is to take advantage of the fact that the images passed to the compressor

come from a sequence, and thus it is possible to identify moving portions of the gameplay

images by performing image differencing. By incorporating this information in the loss
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function, we can penalise the compressor for the poor reconstruction of important objects

without explicitly labelling them. This approach seems particularly well suited for Atari

games, which often consist of a static or largely static background behind moving or

changing objects. Small static details are likely to be well reconstructed because they

are present in every frame.

The idea of using an image differencing-based loss function to focus on small, dynamic

objects in Atari game frames was first postulated by Sandven (2016), but was not in-

vestigated until Nylend (2017). Our implementation is inspired by the implementation

used by Nylend (2017), but differs in how the weighting of each pixel is calculated.

Through the use of the AtariARI and a larger number of games in our evaluations, our

experiments provide a more comprehensive evaluation of this idea.

5.1.4.1 Weighted Reconstruction Loss Formulation

First, we create a weight matrix Wm×n that matches the dimensions of the frames

provided by the environment. For Atari games, these frames are of size 210×160 pixels,

which are greyscale conversions of the raw RGB images provided by the emulator. The

entries of W are given by:

wij =


α xij,t 6= xij,t−d

1 otherwise
(5.1)

where xij,t is a pixel value in the current frame at time step t, and xij,t−d is the value

of the corresponding pixel in a previous time step t − d, d steps in the past. α is a

configurable hyperparameter that acts as a multiplier for the pixel error at each position.

This weight matrix does not take into account the magnitude of the difference between

xij,t and xij,t−d, as the magnitude of the colour difference between the pixels is not

indicative of the significance of the change, i.e. larger changes in pixel colour do not

necessarily indicate more significant differences in the game state. The weight matrix

can be utilised in any pixel-wise reconstruction error metric, a weighted equivalent of

the sum of squared error loss function is given by:
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Previous Frame (t - 3) Current Frame (t) Weight Matrix Overlay

Figure 5.3: The resulting weighted loss overlay given a pair of current and previous
Pong images.

WSSE =

m∑
i=1

n∑
j=1

wij × (xij,t − x̂ij,t)2 (5.2)

In our experiments, we use empirically determined values of α = 4 (i.e. dynamic pixels

are four times as imported as static pixels) and d = 3. Our choice of d > 1 is because the

positions of all objects do not necessarily update in every frame, and the larger delay

captures more of the movement of moving objects.

5.1.4.2 Weighted Reconstruction Loss Examples

The effect of using our weighted reconstruction error is that the compressor is penalised

more for poorly reconstructing regions of the image that objects have moved from and

to. Fig. 5.3 shows the regions of the image that are more highly penalised in an

example from the game Pong. Pong represents an ideal case for this loss function, as the

background remains static during the game and all foreground objects move or change.

Fig. 5.4 illustrates how the use of the loss function draws attention to the objects that

are important for policy learning in all games.

5.2 Atari Gameplay Dataset

Evaluating each candidate in the design space (§5.1) requires a dataset of gameplay

images for each game that can be used for training and evaluation. Two important

considerations for this dataset are that it contains a sufficient volume of images for each
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Figure 5.4: Weighted loss overlays for a randomly selected observation for each game
used in our evaluations.

game to train deep neural networks, and that these images represent a diverse set of

game states. Both requirements are important to ensure that the candidates are able

(and assessed on their ability) to learn representations that generalise to many different

game states. Assessing performance across games is important to ensure that the models
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generalise well across games, as each game tends to look very different to each other and

have different objects of different shapes and sizes of interest.

Datasets of Atari gameplay images have been collected by others in the past, for the

purposes of pre-training deep RL models (Kimura, 2018, Sandven, 2016), state rep-

resentation learning (Anand et al., 2019, Nylend, 2017, Sherburn, 2017, Wang et al.,

2017), and other RL-related tasks (Carr et al., 2019, Tucker et al., 2018). However,

these datasets are not publicly available, so we created our own. Before discussing the

details of our dataset generation process and characteristics of the created dataset, we

first discuss the considerations made about the process of collection.

5.2.1 Data Collection Considerations

Three possible methods for collecting gameplay images are to use a human player, a

random agent, or a trained agent. The advantage of collection using a human player

is that they are able to explore and collect images for a diverse set of game states

by employing a variety of different strategies, provided that they can play the game

competently. However, due to the time required to learn to play each game at a high

enough level to reach later game states, and to collect enough images to train on, in the

order of tens of thousands, it is infeasible to achieve this in reasonable time, particularly

for a collection of games.

Using a random agent, which at each time step performs a random action until the

end of the episode, to collect gameplay images alleviates the issue of being unable to

collect enough images. Left for long enough, a random agent is able to collect an

essentially unlimited number of images. However, what the random agent makes up

for in quantity, it suffers in diversity. While a random agent can explore many game

states, the limitation is that only states that lie close to the initial state and are easily

reachable by performing a random sequence of actions will be visited. A compromise

between these two exploration extremes is to use a trained agent.

As with the random agent, using a trained agent we would be able to collect an effectively

unlimited number of images (even if the agent executed the same strategy during each

episode, due to the stochasticity in the environments). However, since the agent is able

to progress in the game, it would be able to collect a greater diversity of images that
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represent states farther from the initial starting states of the game. The compromise

compared to human player collection is that the trained agent may introduce more bias

into the dataset by including only images for game states that are encountered when

using a particular strategy. However, this trade-off is necessary to collect enough images

for training and testing, and address the issues associated with random agent collection.

Based on the above considerations, collecting game state images using a trained agent is

a good compromise between human player and random agent collection strategies. For

these reasons, we used a trained agent to collect our data.

5.2.2 Data Collection Details

The images for our trained agent dataset were collected using trained Proximal Policy

Optimisation (PPO) agents (Schulman et al., 2017). The implementation of PPO used

was provided by the Stable Baselines reinforcement learning algorithm library (Hill et al.,

2018). Each agent was trained using the same hyperparameters as in the original paper,

and trained for the same 10 million time steps. The training curves and final performance

for each agent are included in Appendix A.1. Using the agents, we collected 100,000

training, 10,000 validation, and 10,000 testing images for each game.

To briefly examine the differences in game states explored by random and trained agents,

we compared the data collected by a random agent against the data collected by the

trained agents. Since it is difficult to measure exploration directly, as a proxy we used

the distribution of pairwise `1 distances between images to visualise the differences

between the two datasets. While we observed differences between the distributions for

all games, this is a particularly suitable and easily interpretable metric for Breakout,

where exploration can be measured by the number of and different combinations of

bricks that are broken by the agent. The pairwise difference distributions for Breakout

are shown in Fig. 5.5. We can see that the trained agent visited states with many

different combinations of broken bricks, leading to a much flatter pairwise difference

distribution compared to the random agent. Since the random agent was never able to

break more than a few of the bricks in the lowest levels, the only game states explored

were those close to the starting state, where all the bricks are present. This corresponds

to a very narrow difference distribution, where the differences in the collected images

are mostly caused by differences in the player and ball positions.
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Figure 5.5: Pairwise distance distributions for images in the randomly collected and
trained agent collected datasets for Breakout.

5.3 Evaluating Representation Quality from a Policy Learn-

ing Perspective

Autoencoders are trained to learn compact representations of the training data that

contain the information required to reconstruct the input. As such, they are typically

evaluated by assessing the quality of the reconstructions they produce. However, for

state representation learning, we are primarily concerned with the quality of the encod-

ing of important state variables, rather than the quality of the reconstructed images.

Since the learning objective during training does not necessarily align with our goal,

measuring reconstruction quality alone is insufficient for assessing the quality of the

learned representations from a reinforcement learning standpoint. For example, min-

imising the reconstruction error does not ensure that the important state variables can

be easily extracted from the latent space encoding of the input. Nor does it ensure that

small, yet crucial details, such as the position of ball in Breakout, Pong, and Tennis,

will be retained, since they contribute very little to the overall reconstruction error.

To assess the quality of the representations learned by the autoencoders in our design

space from a reinforcement learning perspective, we used the Atari Annotated RAM
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Interface (AtariARI) (Anand et al., 2019). This interface was described in §4.5. Be-

fore going into the details of how the state representation learning evaluations were

performed, we first take a more in-depth look at the properties of good state represen-

tations.

5.3.1 Properties of Good State Representations

For efficient policy learning, state representations should encode the essential information

about the environment and discard anything irrelevant (Lesort et al., 2018). In the

context of video games, important information includes the positions of objects and the

values of scores. Textures, colours, and background objects are often included in games

for aesthetic reasons, but they are irrelevant aspects of the environment with respect to

the objective of the game.

In the case of reinforcement learning methods that attempt to learn a value function,

Böhmer et al. (2015) defined four properties that good state representations should

adhere to:

• They should satisfy the Markov property, i.e. all the information required by the

agent to decide on an action should be present in the current state.

• They should contain enough information to estimate the true value of the current

state well enough to enable policy improvement.

• The must generalise to unseen states with similar features.

• They must be low-dimensional enough for efficient estimation of the value of the

state.

However, for our method, only the last two properties are required, as our policy learning

method is able to evolve memory and does not estimate a value function. Instead,

the search takes place directly in the policy space. Furthermore, the desire for low-

dimensional representations is not to enable efficient estimation of the value of each

state, but rather to enable the topological evolution of policy networks.
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5.3.2 Evaluating State Representations using the AtariARI

Anand et al. (2019) created the AtariARI to evaluate the state representations learned

by different state representation learning methods. In particular, those learnt using deep

neural networks. Their approach to this evaluation was to train the state representation

learner, fix the weights, and then train smaller probes that try to predict the values of

different state variables at each time step from the corresponding image from the envi-

ronment. For each state variable, a probe (a single-layer linear classification network)

was trained to correctly classify the target value for each state variable. Each state

variable is stored in a single byte of RAM, making this a 256-way classification prob-

lem. To compare representation quality between games, which each have different state

variables, they are divided into six different categories: agent localisation, other object

localisation, small object localisation, score/clock/lives/display, and miscellaneous. We

follow a similar evaluation method to the one that they propose, however, we propose

the use of regression probes for evaluating the representation of localisation variables

(i.e. variables that encode the positions of objects) and nonlinear probes. We explain

these modifications before describing the evaluation procedure.

5.3.2.1 Regression Probes

Anand et al. (2019) formulate the task of predicting each state variable as separate

classification problems, regardless of the nature of each variable. While this makes

aggregating the results over all state variables for each game easier, it ignores the ordinal

nature of many of the variables. For instance, those that store the positions of objects

along the x or y axis of the screen. When framing the tasks of predicting the values of

these variables as a classification problem, an off-by-one prediction is equally as bad as a

prediction that is off by 100, despite the fact that when predicting discrete variables only

being off by one is an excellent prediction. Especially when the range of each variable

is [0, 255]. Given the importance of localising objects for learning to play the game, it

is important that this information is evaluated as accurately as possible.

As alluded to before, one of the downsides of evaluating representations using classifi-

cation and regression for different state variables is that it is harder to aggregate the
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results for each game. Now, we need to report the overall performance across the cate-

gorical variables separately to the overall performance across the discrete variables. It

also means that if categorical and discrete variables both exist within the categories

defined by Anand et al. (2019), then we would have to break them up. Examining the

state variables for each of the 14 games used in our evaluations (§4.6), we found that

78.8% of all variables are either discrete or ordinal, and thus better suited to evaluation

using regression, rather than classification. Of these variables, 83.3% of them fall under

the localisation category (61.4% of the total number of variables). The localisation cat-

egories are the only categories in which all the state variables for all games are better

suited for regression, and therefore are the only categories that we evaluated using re-

gression probes. Although some games have other variables, such as scores or clocks that

would also be better evaluated using regression, the applicability of regression for such

variables varies between games. For example, for games in which the scores achieved by

the agent and/or opponent are low, such as Pong, these variables are stored in a single

byte of RAM, which means that regression is suitable. However, for games where the

agent can achieve a higher score than 255, as is common in endless-play games such as

Video Pinball, the score is encoded over multiple bytes of RAM. Because the score is

split between bytes, we cannot use regression to evaluate these variables.

Another issue we face with regression is the choice of evaluation metric. For classification,

Anand et al. (2019) report the accuracy and F1 scores for each variable, as well as the

average of these metrics over the variables within categories, and overall. This ability to

aggregate the results of different variables, which have the same maximum range [0, 255],

but different distributions of values and ranges in practice, is crucial for comparisons

between games and categories. For regression, we require a similar metric that can (a)

provide a good indication of predictive performance, and (b) be meaningfully averaged

within and across categories. For this, we use the coefficient of determination, R2,

between the predicted and target values.

The R2 value provides a good indication of model fit and predictive power of the regres-

sion probes trained for each state variable. It is defined as follows:

R2 = 1−
∑

(y − ŷ)2∑
(y − ȳ)2

(5.3)
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where y is the target value, ŷ the predicted value, and ȳ the mean target value. An R2

value of one means that the model (in this case our probe) is able to perfectly predict

the target values, whereas a value of zero indicates that the model is unable to make

good predictions. In this way, performance is described similarly to the classification

probes using accuracy or F1 scores. In practice, the R2 values can be below zero when

the model is evaluated on unseen data, such as is the case for our evaluations, which

use a test set. The interpretation here is the same as for a low positive value: the probe

performance is very poor. Figures 5.6a to 5.6c show how we can visually interpret the

prediction quality of regression probes using R2 values.
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Figure 5.6: An illustrative example of how we can visualise the R2 values of regression
probes.

5.3.2.2 Non-Linear Probes

Another change we made to the evaluation method was training nonlinear probes in-

stead of linear ones. The rationale behind this decision is that the information on state

variables may be compressed in a nonlinear manner that is not extractable using a

linear classifier/regressor. This may be particularly true as the representation size de-

creases, and the compressors are forced to compress the state information into a smaller

vector. In their initial work, Anand et al. (2019) used different methods that learnt

256-dimensional representations. These representations, although far smaller than raw

images, are still very large from a neuroevolution perspective. We experimented with far

smaller representations in the range of 10 to 100 dimensions. While nonlinear encoding

introduces complexity, the policy networks evolved from these encoding methods are

not limited to learning only linear functions, therefore we should allow the evaluation

method to be flexible enough to account for this. Allowing a single hidden layer in the
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probes, proportional to the representation size is a good compromise between allowing

for too much nonlinearity and not assessing the true content of the representations.

One problem that introducing nonlinear probes with a hidden layer is the number of

nodes that the hidden layer should contain. While there is no silver bullet for select-

ing the optimal number of hidden nodes, Heaton (2008) provides several rule-of-thumb

methods commonly used in practice for determining the appropriate number of nodes:

• The number of hidden nodes should be between the size of the input layer and the

size if the output layer.

• The number of hidden nodes should be two-thirds the size of the input layer, plus

the size of the output layer.

• The number of hidden nodes should be less than twice the size of the input layer.

For simplicity, we set the number of hidden nodes in the hidden layer used by nonlinear

probes equal to the size of the input layer, which falls roughly in line with the above

recommendations. The nodes in the hidden layer used Rectified Linear Unit (ReLU)

nonlinearities.

5.4 Experimental Procedure

This section describes the procedure followed for training and evaluating each of the

candidates in the autoencoder design space defined in §5.1. It also describes the process

we used for selecting the final model to use for our experiments assessing the performance

of our hybrid reinforcement learning method, AE-NEAT. The order of the steps leading

to the selection of our final compressor model is illustrated in Fig. 5.7.

Candidate 
Evaluat ions

Final Model 
Select ion

Final Model 
Evaluat ion

Figure 5.7: An overview of the steps leading to the selection of our final compressor
model.
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5.4.1 Candidate Training

Our design space included 120 different candidates (§5.1). We trained each of these

candidates on a set of four games – Asteroids, Bowling, Ms Pacman, and Pong – resulting

in 480 different models. This ensured that the total training time for all of the models

remained feasible, and allowed us to check that the final model chosen from the 120

candidates generalised to the remaining 10 games. Asteroids, Bowling, Ms Pacman,

and Pong were chosen as the subset of games because they are (a) very different in

appearance, (b) contain a wide range of objects of different shapes and sizes, and (c)

represent a range of complexity in terms of their game states.

The learning rate, maximum number of training epochs, dynamic pixel weighting mul-

tiplier α = 4 (§5.1.4), and the KL divergence weighting β = 4 for the disentangled

variational autoencoders (§2.2.2.3) were chosen through informal experimentation prior

to our evaluation of the design space. Each model was trained using our Atari gameplay

dataset (§5.2) for a maximum of 50 epochs. We used early stopping with a patience of

10 epochs to stop training early if performance plateaued. We used a learning rate of

1e−4 and a batch size of 64.

5.4.2 Candidate Evaluation

We trained the regression and classification probes following the same procedure outlined

by Anand et al. (2019). For each game, we collected 45,000 unique frames and the values

of the state variables provided by the AtariARI at the corresponding time step using

the same trained PPO agents used to collect the images for training the Atari gameplay

dataset (§5.2). These images were split into 35,000 training, 5,000 validation, and 10,000

test images. A probe was trained for each state variable for each game, using the Adam

optimiser and a learning rate scheduler with an initial learning rate of 5e−4. Each time

the validation plateaued for five epochs on the validation set, the learning rate was

decreased by a factor of 0.2, to a minimum of 1e−5. Each probed was trained for a

maximum of 100 epochs, but with early stopping if the validation loss plateaued for 15

epochs. Classification probes used cross-entropy loss, whereas regression probes used

mean squared error loss. Only the candidate chosen as our final model was evaluated

on the test set.
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5.4.3 Final Model Selection from the Candidates

The task of identifying the “best” model from our pool of candidates was non-trivial.

Maximising the quality of the encoding of each state variable across all the games while

also minimising representation quality is a multi-objective optimisation problem with

tens of objectives. Therefore, to narrow the search for a good model, we first selected a

representation size based on the trends in AtariARI probe prediction quality observed

for the different categories of state variables across the four games (Asteroids, Boxing,

Ms Pacman, and Pong). After identifying a suitable representation size, we compared

the average localisation and classification performance across all variables and all games

for the remaining models. The final chosen compressor model was one that has good

performance with respect to both of these categories.

5.5 Results

We start by analysing the performance of each candidate on a per-game basis for As-

teroids, Boxing, Ms Pacman, and Pong. Following this, we take a holistic look at

performance across all of these games to identify a candidate to move forward with in

the next chapter. Finally, we evaluate the performance of the final compressor model

across all 14 games of interest.

5.5.1 Candidate Evaluations

The first games we analyse are those with the simplest game states, Boxing and Pong,

followed by the games with more complicated game states, Asteroids and Ms Pacman.

5.5.1.1 Boxing

For Boxing, the AtariARI provides access to seven state variables. These store the x

and y positions of the player and opponent, their scores, and the value of the clock.

Localisation Performance The reconstructed images produced by each candidate

show that all of them were able to consistently and accurately reproduce the position
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Figure 5.8: Original (left) and reconstructed images for the Small Kernel, under-
complete autoencoder using the standard mean squared error reconstruction loss and

a representation size of 20 (middle) and 10 (right).

and shape of both the agent and the opponent, even candidates constrained to the

lowest representation size of 10 dimensions. A comparison between the reconstruction

quality for two (otherwise identical) candidates with representation sizes of 20 and 10

dimensions is shown in Fig. 5.8.

The consistent localisation performance of all candidates is reflected in the AtariARI

evaluation results shown in figures 5.9a and 5.9b, respectively. These figures show that

localisation performance was fairly consistent across all candidates, even as representa-

tion size decreased. However, given the quality of the reconstructions of the agent and

opponent, it is surprising that the average of the R2 values over the x and y positions

were not higher. An interesting observation is that the drop in performance exhibited

as the representation size dropped from 20 to 10 dimensions is not noticeable in the

reconstructions (see Fig. 5.8).

10 20 30 40 50 60 70 80 90 100

Representation Size (Number of Dimensions)

0.0

0.2

0.4

0.6

0.8

1.0

P
er

fo
rm

an
ce

(A
v
g.
R

2
)

Agent Localisation Performance in Boxing for each Candidate

SSE

WSSE

DQN-inspired

Small Kernel

AE

VAE

β-VAE

(a) Average agent localisation performance over
the x and y variables.
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Figure 5.9: Object localisation performance in Boxing for each candidate.
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Figure 5.10: Original (left) and reconstructed images for the best variational (middle)
and undercomplete (right) autoencoders with a representation size of 100 dimensions.
Both models used the DQN-inspired architecture and the sum of squared errors (SSE)

reconstruction loss.

Classification Performance The differences between the representations learned

by different candidates are clear when measuring their ability to learn the values of the

agent’s and opponent’s scores, and the value of the clock. Here, the biggest contributors

to the differences in performance between candidates were autoencoder type (AE, VAE,

or β-VAE) and representation size. In the reconstructions, variational autoencoder can-

didates (standard or disentangled) were consistently unable to clearly reproduce the

score and clock values in the original images, regardless of representation size, recon-

struction error measure, or architecture. In contrast, the undercomplete autoencoders

were able to perfectly reconstruct these values with large representation sizes, although

the reproduced values became blurrier as representation size decreased. This difference

is highlighted in the reconstructions produced by the best undercomplete and variational

autoencoders shown in Fig. 5.10. As with the variational models, the reconstruction er-

ror measure (SSE vs. WSSE) and architecture (DQN-inspired vs. Small Kernel) did not

have a substantial or consistent impact on performance for undercomplete autoencoders.

These results were mirrored in the AtariARI evaluations, shown in Fig. 5.11. The vari-

ational autoencoders (both standard and disentangled) performed consistently poorly

for all representation sizes. However, for the undercomplete autoencoders, we observed

a gradual decrease in performance as representation size decreased. While it is difficult

to identify differences in performance between variational and disentangled variational

autoencoders using the reconstructions, the AtariARI evaluations show that standard

variational models consistently outperformed their disentangled counterparts.
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Figure 5.11: Average classification performance over the the player and opponent
scores, and the clock value in Boxing for each candidate.

5.5.1.2 Pong

For Pong, the AtariARI exposes eight state variables. These are the x and y positions

of the player’s paddle, the opponent’s paddle, and the ball; as well as the player’s and

opponent’s scores.

Localisation Performance First inspecting the paddle localisation performance of

the candidates, shown in figures 5.12a and 5.12b, it is clear that some candidates were

very successful. The biggest contributors to differences in performance were autoencoder

type and reconstruction error measure. For undercomplete (AE) candidates, the choice

of reconstruction measure and architecture mattered very little. All undercomplete

candidates performed similarly for each representation size and exhibited the same trends

in performance as representation size decreased.

The most interesting differences occurred for the variational autoencoder candidates

(both standard and disentangled). Starting with the standard variational candidates

(VAE), both architecture and reconstruction error measure impacted performance. With-

out the use of the weighted reconstruction error (WSSE), the VAE candidates performed

worse than the undercomplete candidates. Furthermore, the Small Kernel candidates

were far higher performing across the spectrum of representation sizes. However, when

WSSE was used, this difference was eroded, and the performance of all VAE candidates

vastly improved. In fact, with large representation sizes, the performance matched that

of the undercomplete autoencoders and exhibited less of a decay as the representation

size decreased. Interestingly, paddle localisation performance was also improved through
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(a) Average agent localisation performance. The
average over x and y localisation.
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(b) Average opponent localisation performance.
The average over x and y localisation.
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(c) Average ball localisation performance. The
average over x and y localisation.

Figure 5.12: Object localisation performance in Pong for each candidate.

the use of the weighted reconstruction error measure for disentangled variational autoen-

coders, but this was less apparent in the reconstructions. Although the R2 values for the

agent and opponent paddles were around 0.6 and 0.75, respectively, when the weighted

reconstruction error measure and the largest representation size of 100 were used (com-

pared to around 0 when the unweighted reconstruction error measure was used), the

reconstructions did not necessarily reflect this, as shown in Fig. 5.13. Particularly in

the case of the opponent’s paddle, although the AtariARI performance almost matched

that of the best performing candidates, the reconstructions were far less accurate and

there appeared to be far more uncertainty.

The trends in the localisation performance for the ball (Fig. 5.12c) as the represen-

tation size decreased were similar to that of the paddles, however, there were some

differences. First of all, for larger representation sizes, there was a clearer delineation in
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(a) Original. (b) Model using SSE (c) Model using WSSE

Figure 5.13: Disentangled variational autoencoder reconstructions for Pong using the
Small Kernel architecture and a 100-dimensional representation.

performance between different groups of candidates. Performance for the undercomplete

models was similar and the best, followed by variational models that used the weighted

reconstruction error measure, disentangled variational models that used the weighted re-

construction error measure, the standard and disentangled variational models that used

the unweighted reconstruction error measure. Once again, the Small Kernel architec-

ture outperformed the DQN-inspired architecture in standard variational models that

used the unweighted reconstruction error measure. This difference was eroded when the

weighted reconstruction error measure was used.

At the lower end of the representation size spectrum, we observed a steep decline in

performance for undercomplete models below a representation size of 40. Similar to

the paddle localisation results, variational models that used the weighted reconstruction

error measure were more tolerant to reduced representation size and as a result, despite

performing worse for larger representation sizes, they surpassed their undercomplete

counterparts at this point. Interestingly, despite the reconstructions of the ball remaining

clear and accurate when the representation size was low, particularly when using the

weighted reconstruction error measure, the AtariARI performance dropped drastically.

This conflict is evident in Fig. 5.14.

One interesting difference between the results for Boxing and Pong is that the perfor-

mance of the disentangled variational autoencoders was far more erratic for Pong, with

large spikes and drops in performance between small changes to the representation size.

It seems unlikely that representation size was the cause of this, and more likely indicates

that these models are far more unstable to train than their standard variational and

undercomplete counterparts.
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(a) Original image.

(b) AE, SSE

(c) AE, WSSE

(d) VAE, SSE

(e) VAE, WSSE

Figure 5.14: A comparison between the image reconstruction quality for different
Pong models that use the DQN-inspired architecture and a representation size of 30.
(A) Shows the original image, (B) and (C) the AE candidates using SSE and WSSE
respectively, and (D) and (E) the VAE candidates using SSE and WSSE respectively.

Classification Performance As witnessed for the Boxing results, many models

showed a sharp decline in performance when the representation size dropped from 20 to

10. This was most apparent in their ability to learn the scores, as shown in Fig. 5.15.

This is interesting because this drastic drop in performance was not accompanied by a

noticeable drop in the reconstruction quality. This may indicate that rather than the

information no longer being present, it may just have been far more compressed and

more difficult to extract by the probe. In comparison, the decoder is far larger and more

powerful and might therefore might have been able to. The difference in the clarity

of the reproduced scores between AE and VAE models (illustrated in Fig. 5.14) was

reflected in the AtariARI performance.

5.5.1.3 Asteroids

Asteroids has the largest number of state variables (41) of all the games. These include

the x and y positions for each of the 15 asteroids, the player, and the player’s two

missiles. They also include variables for the directions of the player and the player’s
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Figure 5.15: The average score classification performance for each candidate.

missiles, as well as two variables that encode the player’s score, and a variable for the

player’s number of lives.

Localisation Performance At first glance, the reconstruction performance in aster-

oids seemed promising (see Fig. 5.16). All candidates appeared to consistently reproduce

the positions of asteroids and the shape of large asteroids, even with representation sizes

of just 10 dimensions. For reproducing small asteroids, it appears that the weighted

reconstruction measure helped all types of models, though not all in the same way.

All undercomplete autoencoders were good at reproducing the positions of the aster-

oids, however, for smaller representation sizes, WSSE improved the reconstruction of

the shape of smaller asteroids. However, as representation size increased, the difference

between WSSE and SSE models decreased. For variational models without WSSE, these

were typically unable to reconstruct the positions or shapes of small asteroids. However,

they were with the help of WSSE.

(a) Original. (b) |Z| = 10. (c) |Z| = 100.

Figure 5.16: Typical Asteroids gameplay image reconstructions using an undercom-
plete autoencoder with the DQN-inspired architecture, the weighted sum of squared

errors (WSSE) loss function, and different representation sizes.
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(a) Average agent localisation performance. The
average over x and y variables.
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(b) Average asteroids localisation performance
over the x and y variables for each asteroid.
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(c) Average missile localisation performance.
The average over the x and y variables.

Figure 5.17: Localisation performance in Asteroids evaluated using the AtariARI for
each candidate.

Looking at the agent, we saw a similar trend to that of small asteroids for undercomplete

autoencoders. When the representation size (|Z|) was too small, none of the models were

able to consistently reproduce the location of the agent. However, the use of WSSE made

the agent appear in reconstructions earlier than models that used SSE, typically around

|Z| = 40 as opposed to |Z| = 50. For variational models, only those with WSSE and

representation sizes of approximately greater than 50 were able to reproduce the position

of the agent. One thing that all models were uniformly poor at was the reconstruction

of the agent’s missiles, though this is not surprising given that they are only a few pixels

wide, even smaller than the ball in Pong.

Interestingly, the AtariARI evaluation results for Asteroids, displayed in Fig. 5.17,

painted a different picture. For the missile localisation, all models performed poorly,

consistently achieving R2 values very close to zero. However, interestingly, this was also
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(a) Average missile direction classification perfor-
mance.
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(b) Average classification performance over the
score and number of lives variables.

Figure 5.18: Classification Performance in Asteroids evaluated using the AtariARI
for each candidate.

true for agent localisation, despite the position of agent being reconstructed well by some

candidates, particularly when the representation size was large. It is also surprising that

asteroid localisation was low for all candidates, around R2 = 0.2 for all representation

sizes.

Classification Performance All candidates were able to accurately reproduce the

number of lives the agent has. Score reconstruction, however, was inconsistent. While

all candidates were able to consistently reproduce the correct number of digits in the

score, all models were inconsistent when it came to reproducing the values of the digits

clearly. It appears that when the score was low, i.e. limited to two digits, all models

were able to reproduce the values, but when the score was large they suffered. The

AtariARI probing results showed no substantial drop in the classification performance

for the score and number of lives as representation size decreased (see Fig. 5.18b).

For all candidates, the missiles were never reconstructed in the reconstructions, mean-

ing that the direction of the missiles along with their positions was impossible to see.

However, the AtariARI probing results, displayed in Fig. 5.18a, indicated that despite

this some information about the missile directions was still retained in the learned rep-

resentations.
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(a) Original image.

(b) AE, Small Kernel, SSE,
|Z| = 100

(c) AE, Small Kernel, WSSE,
|Z| = 100

(d) VAE, Small Kernel, SSE,
|Z| = 100

(e) VAE, Small Kernel, WSSE,
|Z| = 100

Figure 5.19: Image reconstructions for various Ms Pacman models.

5.5.1.4 Ms Pacman

For Ms Pacman, the AtariARI exposes 17 state variables. 12 of these encode the x and

y positions of the agent, four enemies, and the fruit. While the remainder encode the

player’s direction, score and number of lives; and the count of the number of ghosts and

dots eaten. As with Asteroids, for Ms Pacman we observed similar overall results. While

the reconstructions appeared to show that the representations had learned the values of

important state variables, the AtariARI evaluations often showed otherwise.

Localisation Performance For undercomplete models, the fruit was only repro-

duced by models with large representation sizes, and only consistently in those with

representation sizes of 90 or 100. Unlike the undercomplete autoencoders using the

DQN-inspired architecture, the Small Kernel architecture models were unable to repro-

duce the fruit without using the WSSE loss. This is shown in Fig. 5.19. In comparison,

none of the variational or disentangled variational models reproduced the position of the

fruit (again, see Fig. 5.19).
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Figure 5.20: Localisation performance in Ms Pacman evaluated using the AtariARI
for each candidate.

The position of the agent was consistently reproduced by WSSE undercomplete models

for all representation sizes, but not for SSE undercomplete models with representation

sizes less than around 40. Furthermore, as |Z| increased, so too did the brightness

of the spot where the agent was located. However, even at the largest representation

sizes, the agent remained a blurry spot in many reconstructions, and it was difficult

or impossible to visually ascertain the direction the agent was facing. For variational

models, the location of the agent was only reproduced consistently by WSSE models

with representation sizes larger than 10. For disentangled variational models, the agent’s

position was not consistently reproduced by any of the models.

Lastly, the undercomplete autoencoder models did the best job of reconstructing the

ghosts, with blurry spots in their place for models with |Z| >= 50. Below this threshold,

consistency was worse, but WSSE models appeared to be more consistent. However, we

noticed that in some cases “phantom” ghosts that were not present in the original

image were present in the reconstructed images. For disentangled variational models,

the positions of the ghosts were rarely reproduced. For variational models, ghosts were

reproduced only by WSSE models, with increasing accuracy as |Z| increased.

Despite the consistent presence of the ghost in the reconstructions of some models,

performance when evaluated using the AtariARI (Fig. 5.20a) was consistently poor.

Whereas it appeared from the reconstructions that undercomplete autoencoders were the

best at learning to extract the positions of the ghosts and the fruit, the AtariARI results

show that the variational models consistently outperformed them for all representation
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Figure 5.21: Classification performance in Ms Pacman evaluated using the AtariARI
for each candidate.

sizes. Finally, for agent localisation, none of the models performed particularly well,

with a lot of noise present in the AtariARI probing results (Fig. 5.20b). Although, it

appeared that the use of WSSE did improve performance in this regard. All models

showed a slight decline as representation size decreased.

Classification Performance The best category was learning the score and lives.

Here, all candidates performed far better than the other categories. As shown in Fig.

5.21b, undercomplete autoencoders (AEs) were consistently the best, followed by varia-

tional autoencoders (VAEs), and finally disentangled variational autoencoders (β-VAEs).

Looking at reconstructions alone, even at low representation sizes, all models did a

fairly decent job of recreating the positions of the dots the agent must consume, with

only a small number of missing or additional dots in most cases. Overall, it appears

that undercomplete autoencoders produced fewer errors in this regard than variational

autoencoders. Likewise, all models very consistently reproduced the correct number

of remaining lives for the player. Despite good reconstructions of the remaining dots

and ghosts (particularly for those models with larger representation sizes), all models

were consistently poor at learning the player’s direction, the dots eaten count, and ghosts

count (shown in Fig. 5.21a). In this category, all models performed similarly but poorly.

Differences between candidates appeared when inspecting the reconstruction of the

player’s score. While all models consistently reproduced the correct number of dig-

its, the clarity of the digits varied substantially. For undercomplete autoencoders, the
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values were consistently and accurately reproduced, and discernible down to |Z| = 20

when using SSE. However, it appears that using WSSE hurts performance in this re-

gard, as the values became indiscernible earlier, at around |Z| = 30. For disentangled

variational models, none of them appear to have been able to clearly reproduce the

values of digits in the score. For variational models, this also holds true except for one

case: Small Kernel models that used WSSE and had large representation sizes, typically

greater than or equal to 60. The AtariARI classification results are shown in Fig. 5.21.

5.5.1.5 Overall Performance

There was substantial difference between the performance of each candidate across the

different state variable categories and games. There were also prominent differences in

the relationships between representation size and quality for different combinations of

model architecture, type and reconstruction loss measure. In some variable categories

for specific games, we observed consistent performance across all the candidates, even

for those with lower representation sizes (see figures 5.17a, 5.17c, and 5.18a). These

results do not help us to distinguish between the candidates. In other state variable

categories, we observed sharp drops or moderate declines in the representation quality

only after a certain representation size threshold was passed (see figures 5.9a, 5.12a, and

in particular 5.15). These categories were the most useful in identifying a good lower

bound on the choice of representation size. Finally, in a few categories we observed a

steady decrease in performance (of the best models) as representation size was decreased

(see figures 5.11 and 5.12c). These categories required a judgement on how important

the extra performance was worth as representation size increased. As a result of these

different trends, there was no clear representation size that stood out as the best choice.

In the interest of balancing representation size and and quality, we opted for using a

representation size of 40. In most categories, 40 represented a point before a drop in

performance occurred, and in the case of ball localisation in Pong, before a steep drop in

performance for undercomplete models. For the score and clock category, performance

was substantially worse than for higher representation sizes, but considering that this

category is assumed to be of lesser importance than localisation in the context of playing

the game, this was a sacrifice we were willing to make.
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Table 5.1: The average localisation and classification performance of each candidate
with a representation size of 40 averaged over all categories of Asteroids, Boxing, Ms
Pacman, and Pong. The ranks of the top four models are shown, and the final model

shown in bold.

Type Architecture
Reconstruction
Loss

Localisation Performance
(Avg. R2)

Classification Performance
(Avg. F1)

AE DQN-Inspired Unweighted (4) 0.3732 (1) 0.5865
AE DQN-Inspired Weighted 0.3718 (3) 0.5376
AE Small Kernel Unweighted 0.3649 (2) 0.5594
AE Small Kernel Weighted (3) 0.3810 (4) 0.5247
VAE DQN-Inspired Unweighted 0.1915 0.4440
VAE DQN-Inspired Weighted (1) 0.4019 0.4220
VAE Small Kernel Unweighted 0.2987 0.4775
VAE Small Kernel Weighted (2) 0.3905 0.4229
β-VAE DQN-inspired Unweighted 0.1869 0.2283
β-VAE DQN-inspired Weighted 0.3327 0.2374
β-VAE Small Kernel Unweighted 0.2469 0.2979
β-VAE Small Kernel Weighted 0.3541 0.2371

To choose our final candidate with a representation size of 40, we calculated the over-

all localisation and classification scores for each of the remaining models. These are

presented in Table 5.1.

Among the final candidates shown in Table 5.1, there is not a model that performs the

best in both object localisation and the classification of other important state variables.

The model with the highest ranking in both categories was the undercomplete autoen-

coder, with the DQN-inspired architecture, trained using the unweighted reconstruction

loss function. This model ranked 1st and 4th in localisation and classification perfor-

mance, respectively. This candidate was chosen as the final combination to be used

as the representation learning for our evaluation of our hybrid reinforcement learning

method, AE-NEAT.

5.5.2 Final Model Performance

The model that was selected for the evaluation of our hybrid reinforcement learning

method, AE-NEAT, was the undercomplete autoencoder using the DQN-inspired ar-

chitecture, a representation size of 40 dimensions, and the sum of squared errors loss

function. Table 5.2 presents the AtariARI representation quality probing evaluations

for each category of state variables for each game.
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Table 5.2: The AtariARI probing results for each game for the final autoencoder
selected from the design space.

Localisation (Avg. R2) Classification (Avg. F1)
Game Small Object Agent Other Score/Clock/Lives Misc.

Asteroids -0.03 -0.02 0.23 0.58 0.34
Berzerk 0.11 0.83 0.51 0.82 0.51
Bowling 0.86 0.96 0.91 0.98
Boxing 0.58 0.68 0.31
Breakout 0.03 0.40 0.88 0.83
Demon Attack 0.03 -0.03 0.13 0.99 0.80
Freeway 0.35 0.95 0.22
Frostbite 0.63 0.85 0.82 0.51
Ms Pacman 0.16 0.03 0.72 0.30
Pong 0.45 0.71 0.70 0.95
Seaquest 0.36 0.69 0.35 0.88 0.75
Space Invaders 0.00 0.92 0.84 0.44 0.39
Tennis 0.27 0.81 0.82 0.64
Video Pinball -0.00 -0.00 0.23

Similarly to the results observed on the smaller subset of games, the representation

quality of our final model varied substantially between both categories and games. In

many of the games, we observed high prediction quality in the classification state vari-

able categories (Score/Clock/Lives and Miscellaneous). This is the case for Bowling,

Breakout, Demon Attack, Pong, and Seaquest. However, in other games, for example

Freeway and Video Pinball, we observed very poor performance. While the range of the

scores achieved in Video Pinball (ranging from zero to tens of thousands) and the divi-

sion of the score encoding between multiple variable might explain the poor performance

for Video Pinball, it is not obvious why the classification performance of the score in

Freeway was so low, given higher performance in other games.

For localisation performance, we observed even greater variation between categories and

games. With the exception of Bowling, the model was were generally poor at localising

the positions of small objects. For Asteroids, it is unlikely that not learning the positions

of the player’s missiles would not impact the ability to learn a good policy. However, for

games where the agent must learn to avoid (e.g. enemy missiles in Berzerk and Demon

Attack) or return (e.g. the ball in Breakout, Pong, Tennis or Video Pinball) small

objects, this may make it very difficult or even impossible to learn good strategies1. It is

interesting that small object localisation performance is so different between Breakout

1It is still conceivable that the agent may learn creative policies to alleviate these deficiencies, such
as tracking the opponent instead of the ball in Pong.
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(R2 = 0.03) and Pong (R2 = 0.45), given that for both games this relates solely to the

ability to predict the x and y locations of the ball, and in this regard they are visually

very similar.

Despite the inconsistencies in performance across the categories and games, there are

still sufficiently positive results to motivate the evaluation of this state representation

learning approach within our hybrid reinforcement learning method. For example, based

on the high quality potential of the representation learned for Bowling across all cate-

gories, we expect that this game will be one of the high performing games for AE-NEAT,

assuming that the policy required to play the game is not too sophisticated.

5.6 Discussion

There are several interesting results and observations worthy of further discussion.

5.6.1 The Effectiveness of using a Weighted Reconstruction Error

The limitation of using unsupervised learning methods, such as autoencoders, to learn

compact representations is that there is no guidance as to what parts of the image are

useful for policy learning. This means that the compressors sometimes learn to encode

irrelevant information, which may interfere with the learning of relevant information.

What constitutes irrelevant information varies between games, which makes the task of

developing techniques that reduce the focus on irrelevant information difficult. To main-

tain generalisability, the techniques used must not require game-specific information. A

clear example of irrelevant information is the Activision logo at the bottom of the screen

in Boxing (see Fig. 5.8), which is well reconstructed by all candidates.

In an attempt to focus the learning of the encoders on relevant aspects of the image,

we tested the use of a weighted reconstruction error measure, WSSE, that penalised

the autoencoders for not accurately reconstructing moving objects. However, the design

space evaluations showed that the effectiveness of measure varied substantially between

candidates. Although the use of WSSE tended to substantially improve the localisation

performance for variational autoencoders, it had little to no effect on the representations

learned by the undercomplete autoencoders, as assessed by the AtariARI probes. When
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it came to learning the values of game state information such as scores, clock values, or

the number of lives, WSSE tended to have a detrimental effect on performance across

all models.

Further investigation is still required to fully clarify the conditions under which weighted

reconstruction error measures may benefit or disadvantage performance. However, our

results represent the most in depth analysis on this idea yet and have shown that im-

provements in the in the reconstructions do not necessarily lead to improvements in the

encoding of important state variables.

5.6.2 Trade off Between Representation Size and Encoding Quality

Not unsurprisingly, the relationship between representation size and encoding quality

varied quite substantially not only between games, but also between state variables

within games. This variation meant that comparisons between the candidates in our

design space were not straightforward, and explanations for why we observed differing

relationships for different state variables and models are not universal or obvious. An

improved evaluation framework similar to the AtariARI, but that provides object posi-

tions in pixels, and is not limited to storing solely returning RAM values may allow for

a better assessment of state representation learners, and by extension the relationships

between representation size and quality.

5.6.3 Evaluating Representation Quality using the AtariARI vs. Re-

constructions

When proposing the AtariARI as a method for evaluating state representations, Anand

et al. (2019) did not compare assessments using the AtariARI against measuring perfor-

mance by inspecting reconstruction quality, the de facto standard method for evaluating

unsupervised representation learning performance prior to the release of the AtariARI.

Our experiments, in the most formal setting yet, investigated the relationship between

representation size and quality. They highlighted some interesting differences in conclu-

sions that might have been drawn had the candidates been evaluated using reconstruc-

tion quality instead.
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A common occurrence in the results was good reconstruction quality not transferring

to good performance in the evaluations performed using the AtariARI. One of the best

examples of this was the quality of the reconstructions of the agent and opponent in

Boxing, compared to the middling AtariARI performance. We observed that while all

models were able to accurately reproduce the positions of the agent and opponent, the

R2 value for the regression performance topped out at approximately 0.6. One plausible

reason for this is that the information, while clearly present in the compressed repre-

sentations, was too highly compressed for the nonlinear probe to extract and process

to a higher level. This would imply that autoencoders, be them undercomplete, varia-

tional, or disentangled variational, are unable to learn representations suitable for better

performance.

On the other hand, the AtariARI also sheds greater light on situations where perfor-

mance appears poor or indifferent between models in reconstructions, but clear differ-

ences are present in the AtariARI. For example, the differences in score/clock perfor-

mance in Boxing appear equally poor between variational and disentangled variational

autoencoders, and the better performance of variational autoencoders is only evident

when looking at the AtariARI results.

The AtariARI was also able to help identify drops in the representation quality that

would have gone otherwise unnoticed if considering reconstructions alone. Another

commonplace characteristic of the results was sharp drops in performance only after the

representation size was decreased past a breaking point. This is most evident in Pong,

where for the evaluation of the models’ abilities to encode the scores for undercomplete

and variational autoencoders were very consistent, up until the representation size was

reduced to 10 dimensions. Looking at the reconstructions alone, the drop in performance

is unnoticeable, however, in the AtariARI results, the F1 score drops substantially. For

the best models, the drop in F1 score for the best models as the representation size is

decrease from 20 to 10 dimensions is as much as 50%.

Overall, as anticipated, the AtariARI evaluations provide a far more detailed breakdown

of performance than reconstructions alone, but there are still unanswered questions that

remain about the representation learning capabilities of autoencoders.



Learning Compact State Representations 88

5.7 Summary

In this chapter, we defined and evaluated a design space of autoencoder models. Our

aim was to identify a suitable model to use as the representation learner in our hybrid

reinforcement learning method, AE-NEAT. We required a model that balanced represen-

tation size and quality. Through evaluations using the Atari Annotated RAM Interface

(AtariARI), we identified an undercomplete autoencoder model with a representation

size of 40 dimensions to use in our evaluations of AE-NEAT.

Overall, the results observed in our evaluation of our final selected candidate give us con-

fidence that, in at least some of the games in our evaluation set, our selected autoencoder

is able to sufficiently reduce the input space to a high quality compressed encoding that

will enable policy learning using NEAT. In the next chapter we perform an independent

evaluation of NEAT for policy learning from compact state representations. Then, in

Chapter 7, we evaluate AE-NEAT as a whole.



Chapter 6

Policy Learning from Compact

State Representations

Our proposed hybrid learning method, AutoEncoder-augmented NeuroEvolution of Aug-

menting Topologies (AE-NEAT), consists of two major components: a state representa-

tion learner, and a policy learner. The last chapter concentrated on identifying a suitable

autoencoder model to serve as the state representation learner, followed by an evaluation

of the most promising model in isolation from the policy learner. This chapter shifts

the focus to the policy learning component of AE-NEAT. The role of the controller (the

policy learning component) is highlighted in Fig. 6.1. In this chapter, we perform an

independent evaluation of using the NeuroEvolution of Augmenting Topologies (NEAT)

algorithm (Stanley and Miikkulainen, 2002) for evolving policy networks for playing

Atari games, from hand-crafted, compact state representations.

The remainder of this chapter is divided into four sections. The first section describes

the experimental procedure for the AtariARI policy learning experiments, including

the setup of the Atari environments, our process of hyperparameter selection, and the

metrics for evaluating and benchmarks for comparing agent performance. The second

section describes the results of the experiments, followed by a discussion of these results.

The third section provides a discussion of the results observed, while the closing section

concludes by summarising the key findings of the experiments, that influence decisions

made in Chapter 7.

89



Policy Learning from Compact State Representations 90

Compr essorEnv ir onment Cont r ol l er

Act ion

Observat ion Features

Agent

Figure 6.1: A recap of the role of the controller in agents that use a compressor-
controller design.

6.1 Experimental Procedure

The experiments performed for this chapter assessed the plausibility of using NEAT

as the algorithm for evolving policy networks in our hybrid learning method, before

evaluating the method as a whole. This was assessed using the state representations

provided by the Atari Annotated RAM Interface (AtariARI) (§4.5). These represen-

tations are both compact and of high quality, which enabled us to set expectations

on performance for our later experiments. We followed a similar standardised experi-

mental setup to other works that have trained Atari-playing agents using evolutionary

(Hausknecht et al., 2014, Salimans et al., 2017, Such et al., 2017) and gradient-based

(Mnih et al., 2015, van Hasselt et al., 2016) methods.

6.1.1 Environment Setup

The evolved agents were evaluated using the Atari environments provided by the OpenAI

Gym (Brockman et al., 2016). These provide a high-level interface for the Arcade

Learning Environment (Bellemare et al., 2013). For each environment, the respective

AtariARI wrapper was used to provide a compact state representation at each time step.

Further details on these state representations are provided in §4.5. For each game, we

normalised the state variables provided by the AtariARI to values within the range [0, 1].

These values served as the inputs to the evolved neural network agents. Normalisation

was achieved by dividing each state variable by 255. This is guaranteed to produce a

value within the range [0, 1] because each state variable represents a byte of RAM, with

a value within the range [0, 255].
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To ensure that each episode of gameplay terminated, and that the agents could not

succeed by memorising a specific sequence of actions, we used standard adaptations

to the Atari environments. To ensure episode termination, we used a frame cap, that

is, a limit on the length of each episode. We set this limit to 18,000 frames, which

equates to five minutes of gameplay, the same limit used by Mnih et al. (2015). This

allows for fair comparison against the expert human scores they reported for each game,

collected under the same conditions. This frame cap applies to game frames, not training

frames (a frame that the agent decides to take an action on). The number of training

frames is fewer than 18,000 because we used stochastic frame skipping to introduce

randomness into the environments. This repeats each action chosen by the agent for the

next either two, three, or four frames. This is one of the standard practices for breaking

the determinism of games, and is available in the OpenAI gym Atari environments.

Other alternatives include using a random number of no-op (no action) starts (Mnih

et al., 2015) or human starts (Nair et al., 2015).

6.1.2 Hyperparameter Selection

Given the number of hyperparameters, and the time required to perform evolutionary

runs, a grid search or other method for formally searching for optimal hyperparameter

values was infeasible. Therefore, our hyperparameters were initialised based on prior

studies that have used evolutionary algorithms in the context of Atari-playing agents

(Hausknecht et al., 2014, Peng et al., 2018, Salimans et al., 2017, Such et al., 2017). We

empirically refined these values through informal experimentation on a subset of three

games: Asteroids, Boxing and Pong. Our approach to identifying a promising set of

hyperparameters was to look for those that a) showed improved performance over time,

and b) controlled speciation. The single set of values chosen from these games was then

used for our formal experiments across all games. This subset of games was chosen

because they all have good representations, considerably different gameplay mechanics,

and cover the spectrum of initial network sizes (due to the size of their input and output

spaces). Considering games that require different network sizes is important to ensure

that the speciation mechanism of NEAT adequately speciates the populations for each

game.
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Table 6.1: A summary of the experimental parameters used in our experiments.

Parameter Value

Evaluation
Max Frames per Episode 18,000
Action Set Legal Actions
Min Action Set Size 3
Max Action Set Size 18
Min Input Set Size 6
Max Input Set Size 41

NEAT
Generations 200
Population Size 130
Add Node Probability 0.03
Add Connection Probability 0.05
Mutate Weight Probability 0.8
Activation Function Sigmoid

The initial population of networks were fully connected with no hidden nodes. The

number of input and output nodes varied between games due to the size of the state

representation provided by the AtariARI and the set of legal actions the agent is allowed

to perform. All other hyperparameters were held constant across the games. All weights

and biases were initialised using a uniform distribution with a range of [-3, 3]. Mutations

for weights and biases were drawn from a uniform distribution with a range of [-0.05,

0.05]. We chose low mutation rates to ensure that existing functionality was not broken

by mutations. A summary of important hyperparameter values are listed in Table 6.1.

The full list and assignment of hyperparameters are included in Appendix B.1.

6.1.3 Evaluation Procedure

All games use a common assignment of hyperparameter values. A separate policy was

evolved for each game. For each game, three evolutionary runs, each with a different

random seed, were performed, each for 200 generations. During each generation, the

fitness of each individual in the population was calculated as the mean cumulative reward

received over three episodes of gameplay. The cumulative reward is analogous to the

agent’s score for the episode. An average over a number of episodes is required to obtain

an accurate estimate of the fitness of each individual because of the introduced (§6.1.1),

and sometimes inherent stochasticity, in the environments. We found three episodes to

be a good balance between fitness estimation quality and maintaining feasible training
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run times, given the available compute resources. An episode was terminated if the

frame cap was reached, and the score for that episode was recorded as the cumulative

reward at that point. To speed up the evaluations of the population at each generation,

they were parallelised over 130 CPU cores. To select the final policy for each game, the

best policy from each run was evaluated for 100 episodes. The policy with the highest

average reward is reported in our results.

To assess the performance of the evolved solutions for each game, we compare them

against the expert human scores published alongside DQN (Mnih et al., 2015). These

scores are the mean score achieved over 20 episodes by a professional human games

tester, after approximately two hours of practice playing each game. The only exception

to this is for Berzerk, which was not included in their set of experiments. Instead, for

Berzerk, we compare the agent’s performance against the human score reported by van

Hasselt et al. (2016). While this score was achieved under slightly different conditions

(achieved from episodes starting with human starts), it provides a closer comparison

than using world record scores. The reason we do not use records for the games is

because they are not indicative of average expert human performance. We also compare

the performance of our agents against the published results of NEAT using Hausknecht

et al.’s (2014) object class representation. This provides a point of comparison against

using NEAT to evolve agents using another high-level state representation. These scores

were obtained using a slightly different evaluation procedure, only an average over five

episodes of gameplay and using a frame cap of 50,000 frames. We also compare the

performance of the human scores, and the NEAT AtariARI and NEAT Object Class

agent scores against the scores obtained by a random agent. The scores for the random

agents were collected using the same environment setup as for the NEAT AtariARI

agents (§6.1.1). The random agents make decisions by uniformly sampling each action

from the set of legal actions for each game.

6.1.4 Human-Normalised Scoring

For Boxing, Pong, and Tennis, the agent plays against a computer-controlled opponent.

In these games, the total reward is defined as the player’s score minus the opponent’s

score. Therefore, the agent can achieve a negative total reward. For all other games,

the agent’s score begins as zero, and points are accumulated during gameplay.
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Because each game has a different scoring mechanism, it is difficult to compare agent

performance between games directly. Therefore, to compare performance between games

and against human performance, we report agent performance using human-normalised

scores. These scores measure the percentage of the human score that is achieved by the

agent and are calculated by

normalised score =
agent score−min score
human score−min score (6.1)

where agent score refers to the mean cumulative reward of the best performing solution

over 100 episodes of gameplay, min score is the minimum total reward possible for the

game, and human score is the expert human score.

6.2 Results

This section presents the results of the AtariARI policy learning experiments. First,

we examine the performance of the evolved agents in comparison to expert human per-

formance, agents evolved using a different state representation, and the performance

of random agents. Following this, we investigate other characteristics of the results,

including the network architectures and policies of the evolved agents.

6.2.1 Overall Performance

Fig. 6.2 shows the human-normalised performance of each of the best agents; as can

be seen, performance varies substantially between games. The bar colour denotes the

quality of the state representation provided by the AtariARI, while the dashed line

indicates the threshold of expert human performance. Setting aside the performance

of the Tennis A agent, which turns out to have exploited a loophole in the evaluation

process, only the agents for Boxing and Bowling exceed expert human performance.

For other games, the agents perform far worse. The Freeway and Frostbite agents come

close to expert human performance, achieving 92% and 89% of the average expert human

score on average respectively. Although the best performing games (Boxing, Bowling and

Freeway) have good state representations, the high performing Frostbite agent illustrates
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Figure 6.2: The human-normalised performance of the best agent for each game.

that for some games, good strategies can still be discovered with imperfect and missing

information. Although the Tennis A agent also exceeds expert human performance, this

is achieved by exploiting a loophole in the evaluation process. The true performance

on Tennis, after addressing the loophole mentioned above, is recorded as Tennis B. The

difference between Tennis A and Tennis B is explained in §6.2.3.

Table 6.2 lists the average scores of the best agents for each game and compares these

against the average scores achieved using Hausknecht et al.’s (2014) hand-crafted object

class representation, the performance of a random agent, and the expert human scores

reported by Mnih et al. (2015). The standard deviations for the AtariARI and random

agents are also reported. The variability in scores for the other agents were not reported

in the respective papers. This table highlights a few unexpected outliers in terms of per-

formance; in particular, our evolved agents for Pong and Breakout perform considerably

worse than NEAT using the object class representation and human performance. In

addition, the random agent exceeds both the AtariARI and expert human performance

for Video Pinball. These are further investigated in the following sections.

The result for Video Pinball is an outlier, in that it was the only game for which the best

evolved agent did not outperform a random agent. However, we found that the random

1Score from van Hasselt et al. (2016).
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Table 6.2: Scores for NEAT using the AtariARI inputs, compared against NEAT using
a hand-crafted object representation, a random agent and expert human performance.

Game
NEAT
AtariARI

NEAT Obj. Class
(Hausknecht et al., 2014)

Random
Human
(Mnih et al., 2015)

Good Representations
Asteroids 1693.9 (613.0) 4144.0 1013.7 (439.0) 13157.0
Bowling 190.8 (23.4) 231.6 24.3 (5.3) 154.8
Boxing 27.4 (17.0) 92.8 0.2 (4.4) 4.3
Freeway 27.5 (1.9) 30.8 0.0 (0.0) 29.6
Pong -16.4 (2.5) 15.2 -20.3 (0.9) 18.9
Tennis A 0.4 (0.9) 1.2 -23.9 (0.3) -8.9
Tennis B -18.6 (1.1) 1.2 -23.9 (0.3) -8.9

Fair Representations
Berzerk 984.8 (175.3) 1202.0 162.0 (118.1) 2237.51

Breakout 4.0 (5.4) 43.6 1.5 (1.3) 31.8
Demon Attack 964.7 (388.6) 3464.0 185.6 (139.2) 3401.0
Frostbite 3873.2 (1128.8) 1452.0 76.0 (40.7) 4335.0
Ms Pacman 2559.2 (872.2) 4902.0 220.3 (169.5) 15693.0
Seaquest 750.0 (38.1) 944.0 88.8 (64.3) 20182.0
Space Invaders 729.3 (91.9) 1481.0 157.4 (101.0) 1652.0
Video Pinball 6859.0 (5401.2) 253986.0 22768.1 (14386.9) 17298.0

agent also outperformed the expert human performance (on average). This result is

discussed further in §6.3.4.

Despite the more compact state representations provided by the AtariARI, our agents

typically perform worse than the NEAT object class agents; outperforming them in only

one of the 14 games (Frostbite).

6.2.2 Fitness over Time

Figure 6.3 shows the fitness curves for the best run for each respective game. For each

generation, the fitness of the best genome is shown in red, the population’s mean fitness

in blue, and one standard deviation around the mean is shaded. The plots highlight

some key differences in the learning patterns between games. For some games, including

Asteroids, Bowling, Boxing, Ms Pacman, Pong, and Space Invaders, we see promising

evidence of progress being made over time. Another interesting observation is that for

many of the games with only fair state representations (Berzerk, Breakout, Demon

Attack, Seaquest, and Video Pinball) there is little to no improvements in the best

solution found over time. This may indicate that the missing information for these

games is indeed important for learning.
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Figure 6.3: The fitness curves for the AtariARI agents in the best run for each game.

6.2.3 Loopholes and Local Optima

In several of the games, we observed the agents succumbing to interesting locally optimal

behaviour. Two extreme cases of this are for Pong, due to a loophole in the game, and

Tennis, due to the way we calculated fitness.
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When playing Pong, the initial trajectory of the ball for each episode is randomly selected

from a small set. However, for one of the trajectories, the agent can achieve a perfect

score (21-0) in approximately 22% of episodes2 by merely moving to one particular

position. In this position, when the opponent returns the ball, it always rebounds back

to the agent. This behaviour was discovered early on in one of the three Pong runs

(in the 18th generation), and was never surpassed. Interestingly, this run performed

much poorer than the other two runs after finding this local optima, which may indicate

that after this misdirection, the population was unable to recover and discover a better

strategy.

To play Tennis, the agent and the opponent take it in turns to serve each game within

the episode. When it is the agents turn to serve, the agent must execute the FIRE action

to begin. However, agents that learn to do this typically perform very poorly initially,

as they cannot track and hit the ball each time it is returned. Therefore, these agents

lose the majority of games and therefore, all sets. As a result, the agent accumulates

total reward close to the minimum (-24). Because of the frame cap on the length of

episodes (put in place to prevent endless play in games without a definitive end), the

population of agents quickly converges on the strategy of taking no actions to stop the

Tennis match from progressing and receive a total reward of zero.

To address the issue of the agent refusing to play, we changed the reward given to Tennis

agents if they reach the frame cap. Since the frame cap should never be reached when

playing Tennis, if the agent is attempting to play the game, we set the reward that

the agent receives to the minimum possible reward (-24). This prevents the agent from

exploiting the loophole and leads to objectively worse, but not misleading results. We

report the results for the original and modified settings as Tennis A and B, respectively.

6.2.4 The Effect of Representation Quality and Network Size

When considering performance and representation quality, all of the agents that match

or exceed human performance are provided good state representations. However, none of

the other agents for games with good representations eclipse human performance. This

suggests, unsurprisingly, that more than just representation quality influences perfor-

mance.

2averaged over 30 samples of 100 episodes
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Figure 6.4: The relationship between performance, representation quality and initial
network (input + action space) size.

One potential factor that might also influence the ability to evolve solutions is the

combined size of the state representation and action space for each game. This can

be considered a pseudo-measure for game difficulty, something that is hard to define

precisely. Games with both large state representations and large action spaces require

the agent to process more inputs and choose from many possible actions, making the

task of choosing a good action more difficult.

Fig. 6.4 helps to illustrate and investigate the relationship between performance, repre-

sentation quality and network size. From this, we can see that the highest performing

agents were all in games that had relatively small combined input and output space

sizes. Given this trend, there are several outliers, such as Pong and Tennis, with sur-

prisingly low performance, when considering the small size of the input and output

spaces, representation quality and the performance achieved with other methods.

6.2.5 Evolved Architectures

Inspecting the architectures of high-performing agents reveals some surprising simplicity.

None of the solutions to any games evolved many hidden nodes (the maximum num-

ber of hidden nodes was 27 for Ms Pacman). Even the networks for high-performing

solutions were very simple, with the best Boxing and Bowling agents having 18 and 13



Policy Learning from Compact State Representations 100

nodes respectively. This may have been a consequence of the particular hyperparameter

values chosen, but it shows that simplicity is not the sole explanation of poor perfor-

mance. Architecture diagrams for each one of the best performing agents are included

in Appendix B.2.

Though it is difficult to interpret neural networks, there are some structures we know

to be useful that we can inspect the networks for, such as the presence of longer path

lengths and recurrent connections for tracking moving objects. As mentioned earlier, a

consequence of our time-delayed recurrent neural network implementation is that not

only self-loops and backward connections create memory, but also different path lengths.

Knowing that memory is required in order for the agents to track the movement of ob-

jects, we can inspect solutions for games in which tracking is important as an explanation

for their poor performance. Despite requiring memory to learn good strategies, the solu-

tions for Tennis or Breakout do not appear to have developed the structural innovations

required to track the ball. In Breakout, the evolved architectures do not include a de-

layed pathway or recurrent connection to enable the agent to account for the y direction

of the motion of the ball, and the agent for Tennis does not evolve connections or ad-

ditional nodes that allow it to account for either the x or y direction of the ball. For

the best Pong agent, there are delayed pathways between the x and y positions of the

ball and the outputs. However, the agent does not appear to be utilising such structures

to track the ball when it’s behaviour is examined. The architecture diagram for the

best Pong agent is shown in Fig. 6.5. The width of each connection is scaled by the

magnitude of its weight.

6.3 Discussion

The variation in performance, behaviour, and architecture of evolved policies for differ-

ent games leads to several interesting points worthy of discussion. In this section, we

elaborate on each of these points before discussing avenues for further research.



Policy Learning from Compact State Representations 101

Player Y

NOOP

FIRE

RIGHT

LEFT

RIGHTFIRE

LEFTFIRE

Player X

Enemy Y

Enemy X

Ball X

Ball Y

Enemy Score

Player Score

Bias

Figure 6.5: The evolved network architecture for the top performing Pong agent.

6.3.1 Performance Relative to the Hand-Crafted Object Representa-

tion

The AtariARI agents perform poorly compared to the agents trained by Hausknecht

et al. (2014) using their hand-crafted object representation. With the exception of the

Frostbite agent, the other agents all perform worse than their reported scores. There

are a number of possible reasons for this.

One possible reason is that spatial information may be more explicit in object class rep-

resentation than in the AtariARI representation. Though the object class representation

is larger, each input value represents the presence of a particular object in a particular

location. In comparison, the information in the RAM values is more densely encoded.

In some cases, there is also an unknown mapping between the RAM values and the

object locations on screen. Since the value of each byte is limited to the range [0, 255],

the values in RAM may not directly match the values of higher level information. A
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prime example of this is for games with large scores, and games with agents that move

vertically. For games with large scores (e.g. Space Invaders, Video Pinball) the player’s

score is stored using several bytes (most likely each representing least significant to most

significant bits of the larger number), therefore, in order for this score to be useful, it is

likely that the evolved architecture must learn to combine these values into something

meaningful.

For games that store locations, there may also be mappings between the RAM values

and the locations of objects. The original authors of the AtariARI have since reported

that not only are the mappings between RAM values and pixel positions inconsistent

between games, they are also sometimes inconsistent within games. For example, the

RAM values of some games increase in increments of 16 as the sprites move.

There is also the possibility that differences in performance are caused by differences

in the implementation of NEAT, or in the chosen hyperparameters. While our hyper-

parameters match those for the ones they reported, some important hyperparameters,

such as those for the strength of weight mutations are not reported.

One final observation is that the frame cap was higher for their evaluations (50,000

vs. 18,000 frames), and the number of episodes of gameplay the agents scores were

averaged over is significantly less (5 vs. 100). While our frame cap was chosen to

enable us to make primary comparisons between our agents and expert human scores.

For quick-to-complete games, such as Pong, the extra frame cap is unlikely to make

much of a difference, but for endless gameplay games, such as Space Invaders and Video

Pinball, the longer episode time could contribute to the higher scores observed. Finally,

given the variability in scores achieved by our agents, the low number of evaluations per

game may misrepresent the true performance of their agents. For many of our agents,

the fitness plots show far higher scores during evolution (e.g. Video Pinball) which are

vastly reduced when the agent’s score is averaged over a large number of episodes. Given

the variation observed in even our high performing agents, it could be that the scores

reported by Hausknecht et al. (2014) might be lower if averaged over more episodes.

Since each of our agents is evaluated over 3 episodes each generation, our max fitness

scores are more comparable to their reported scores.
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6.3.2 Dealing with Partial Observability

Without incorporating information from multiple frames, many Atari games are par-

tially observable Markov decision processes. Good examples of such games are Pong,

Tennis and Breakout, as they require the agent to evolve memory to track the direc-

tion of movement and speed of a ball. As reported earlier, none of the agents for these

games evolved the required structures to perform this tracking, which partially explains

their poor performance. One potential reason for this is that the structures required

for tracking the ball require many successful mutations and as such lie some distance

from the initial conditions. If this is the case, devising speciation methods that better

protect intermediate mutations that are initially detrimental to performance but are

needed for more complex structures may be the key to unlocking better performance

in games that require complex or long term memory. A difficulty in addressing this

though is that increasing the strength of structural mutations may prevent the agents

from learning entirely. This balance between mutation strength and progress is one of

the key challenges for neuroevolution methods, and one of the reasons why they do not

scale to evolving larger networks. An alternative method for increasing the likelihood

of the required mutations occurring is to increase the population size. This allows for

greater exploration while not negatively impacting performance.

6.3.3 Surprising Simplicity of Solutions

Perhaps the most interesting of our results is that for some games there exist surprisingly

simple solutions. Often, human-designed neural networks are highly over-parameterised,

and our results begin to lift the veil on the actual complexity required to encode effective

policies for some games. The size of our evolved solutions, particularly those that are

high-performing, stand in stark contrast to the sizes of networks trained using other

techniques. For example, even after the convolutional feature extraction layers, the

commonly used DQN architecture has a layer of 512 hidden nodes before the output

layer. Our results show that given a sufficient state representation, learned or otherwise;

some games only require comparatively tiny policy networks. These findings suggest that

the possibility of finding smaller overall networks by separating state representation and

policy learning may indeed be possible and is worthy of further investigation. We suspect

the primary reasons for the discovery of these small, yet successful, architectures appears
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Figure 6.6: A gameplay image from Video Pinball.

to be that the solutions exist near the initial conditions and the games are simple to

play, and that structural mutations must provide benefit to the agent to ensure that

they are retained and slowly propagated throughout the population.

6.3.4 High Random Agent Performance in Video Pinball

For Video Pinball, the experiments found that on average the random agent outper-

formed both the AtariARI agent and the human player. To understand why randomly

choosing each action is such a successful strategy (at least on average), it is important

to understand how the game is played.

Video Pinball is designed to simulate an arcade pinball machine. The aim of the game

is to accumulate as many points as possible. These points awarded in varying amounts

for hitting different targets with the ball. The player is only required to hit the ball, by

firing the left or right bumper, when it drops to the bottom of the screen. Failing to do

so, causes the ball to fall out of play. Simply keeping the ball in play is sufficient for

gaining points slowly, but actively aiming for high value targets is the ideal strategy. A

screenshot of Video Pinball is shown in Figure 6.6.

One reason why the random agent performs so well is because there are a small number

of actions to choose from, and, there are very few critical time steps (time steps when

the agents choice of action is important). In fact, at the critical time steps, there is

an approximately 44% chance that the agent will randomly choose the correct action3.

While this strategy works well on average, as was shown in the results, it leads to very

3There is a total of nine legal actions the agent can choose from, but eight of these actions result in
firing either the left or right bumper (four for each), and only one results in the agent taking no action.
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high variability in episode scores. Though the variance in the scores achieved by the

human player was not reported by Mnih et al. (2015), it is likely that although the

average score is slightly lower, they are more consistent than the random agent.

The variability in episode scores also likely contributes to the failure of NEAT to find a

good solution. This is because, particularly early on, the high variance makes it difficult

to assess the true fitness of each individual. As a result, individuals that have developed

better strategies on average, are likely assigned lower fitnesses than poorer agents because

the fitness is decided only based on an average over three episodes. Although an average

over three episodes is a good compromise between evaluation accuracy and compute

time for most games, for Video Pinball, it would appear that it is a poor one. However,

as is shown in Table 6.2, even when performing 100 evaluations the variance is still very

high. This would make it very difficult for evolution to proceed, but, if it could pick a

better direction early on, then you might expect the variance to decrease later as the

agent actually learns a better strategy.

6.4 Summary

High-quality, compact state representations can make it easier to find solutions to com-

plex reinforcement learning problems. They also open up the possibility of using neu-

roevolution to evolve elegant solutions. This chapter assessed the plausibility of using

NEAT to evolve agents for a subset of Atari games, using the inputs provided by the

AtariARI. The purpose of these experiments was to independently evaluate the ability

to evolve solutions from hand-crafted state representations. In the following chapter,

we combine the findings from this and the previous chapter and evaluate our combined

state representation and policy learning method, which was described in Chapter 4.

Although the evolved policies only exceeded or were competitive with expert human

performance in a handful of games – Boxing, Bowling, Freeway, and Frostbite – we

were able to show that surprisingly simple and small neural networks could play these

games effectively. Furthermore, we were able to identify potential reasons for the poor

performance exhibited in some games. First, many of the games for which poor solutions

were found were categorised as having only fair quality state representations provided by

the AtariARI. This indicates that the missing information may be more important than
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first thought for finding good solutions. Second, the encoding of the spatial information

provided by the AtariARI may make the information difficult to process, adding to the

challenge of evolving solutions for the games.

Overall, the results show that, when not required to learn compact state representations

as well as policies, neuroevolution methods that optimise both weights and topology

can find elegant solutions to complex reinforcement learning problems. This provides

promising evidence that our hybrid learning method may be successful. In the following

chapter, we combine the findings from this and the previous chapter and evaluate our

combined state representation and policy learning method that was described in Chapter

4.



Chapter 7

Simultaneous State

Representation and Policy

Learning

The previous two chapters evaluated the state representation (compressor) and policy

learning (controller) components of our hybrid learning method, AE-NEAT, in isolation.

Having established that both of these components are able to function independently,

in this chapter we evaluate our hybrid method as a whole. We begin by explaining the

experimental setup for our AE-NEAT evaluations. Following this, we present the results

of these evaluations. Finally, we discuss the results.

7.1 Experiments

The experiments presented in this chapter follow a similar design to the policy learning

experiments that were conducted using the AtariARI, detailed in §6.1. As we describe

the setup for the experiments in this chapter, we highlight any differences between the

two experimental designs.

107
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7.1.1 Environment Setup

In keeping with our other experiments, we again used the OpenAI Gym (Brockman

et al., 2016) Atari environments to evaluate the agents. As with the environment setup

for our independent policy learning experiments (§6.1.1), we used stochastic frame skip-

ping to introduce randomness into the environments and a frame cap of 18,000 frames

(equivalent to five minutes of game time). The only difference between the environments

used for our independent and hybrid experiments is the observations that are provided

to the agents. Instead of using the the state representations provided by the AtariARI,

the agents are fed full-size (210 × 160 px), single-channel, greyscale images that the

compressor must learn to compress.

7.1.2 Hyperparameter Selection

AE-NEAT has two sets of hyperparameters: those that relate to the evolution of the

policy network using NEAT, and those that relate to the training of the autoencoder.

The addition of the compression stage during fitness evaluations and the training of the

autoencoder between generation substantially increases the time to perform each run.

As a result, the difficultly of optimising hyperparameters remained and prohibited our

ability to perform a more comprehensive search for good hyperparameters. Table 7.1

includes a summary of the hyperparameter values used in our experiments. The full list

of hyperparameters and values are listed in Table C.1 in Appendix C.

7.1.2.1 NEAT Hyperparameters

Given the success of the experiments in Chapter 6, we used the same NEAT hyperpa-

rameters as in our AtariARI policy learning experiments (§6.1.2), with the exception of

a large population size of 300 instead of 130. This difference was possible because of

increased availability of compute resources at the time of performing our hybrid learning

experiments. A larger population is beneficial because it allows for greater exploration

of the policy space. To ensure that the chosen hyperparameter values remained viable

despite the changes to the state representations fed to the policy networks, we checked

them on the on the same subset of three games (Asteroids, Boxing, and Pong) that

were used for hyperparameter optimisation in Chapter 6. The main purpose of this
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Table 7.1: A Summary of the important hyperparameter values used for our AE-
NEAT evaluations.

Parameter Value

Evaluation
Max Frames per Episode 18,000
Action Set Legal Actions
Min Action Set Size 3
Max Action Set Size 18
Image Store Size 100,000
Image Sampling Method Random

NEAT
Generations 200
Population Size 300
Add Node Probability 0.03
Add Connection Probability 0.05
Mutate Weights Probability 0.8
Activation Function Sigmoid

Autoencoder
Latent Space Dimensions 40
Type Undercomplete
Architecture DQN-inspired
Loss Function Sum of Squared Errors
Epochs per Generation 1
Images per Generation 20,000

was to check that these parameters still adequately controlled speciation with the larger

networks and showed evidence of some performance improvement over time. Both ob-

servations provide an indication that the mutation settings are of appropriate strength.

7.1.2.2 Compressor Hyperparameters

Additional hyperparameters are required for the training of the compressor: the number

of training epochs per generation, training sample size, and observation store size. The

observation store is used to collect the gameplay images that are encountered by the

different policy networks so that they can be used to train the compressor. For other

hyperparameters, such as the learning rate and optimiser, we used the same configuration

as for the state representation learning experiments. These are listed in §5.4.1. Between

each generation, we refined the encoder by training for one epoch, on a random subset

of 20,000 images from the observation store. We found this to be a good compromise

between minimising the time between generations and ensuring that the encoder is
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refined quickly enough at the beginning of each run. We set the image store size as

100,000. This is a compromise between storing all images generated by the agents and

what can be stored in memory for quick access.

One of the biggest issued faced with image collection is the introduction of latency in the

evaluation of individuals, caused by the need to save observations from the environment

that result from the agents actions. Given a population size of 300, three episodes of

gameplay for each evaluation, and a frame cap of 18,000 frames, the maximum number

of images that can be generated is over 16 million. Storing all of the images generated

in a centralised store for the autoencoder to use for training between generations is

infeasible, due to the time to transfer each image over the network and save it to disk.

Instead, the size of the observation store was set to a fixed limit (in our experiments

100,000 images). Each worker stores only a random sample of N× 1
P × 1

E images for each

episode of gameplay, where N is the size of the observation store, P is the population

size, and E is the number of episodes that each individual in the population is evaluated

for every generation. This sample is then sent to the centralised observation store, a fast

in-memory Redis database1, which stores the most recent N images. Random sampling

is important for ensuring that observations from throughout the episodes are available

for training the autoencoder, rather than those only for early or late game states.

7.1.3 Evaluation Procedure

Our evaluation procedure remains the same as for our AtariARI policy learning experi-

ments, however, in addition to expert human scores, we perform additional comparisons

against the best performing alternative evolutionary methods that have been used to

evolve Atari agents from low-level pixel inputs.

We compare the performance of our hybrid method against OpenAI ES (Salimans et al.,

2017), Deep GA (Such et al., 2017), and HyperNEAT (Hausknecht et al., 2014). We

also compare our results against Agent57 (Badia et al., 2020), the highest performing

general Atari game playing method of any type to date, and the first method to produce

agents that exceed expert human performance in all 57 Atari games supported by the

Arcade Learning Environment (Bellemare et al., 2013).

1redis.io

https://redis.io/
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As emphasised earlier, the main contribution of this work is to show that AE-NEAT

can successfully evolve game playing agents. However, we include comparisons against

other reported results for evolutionary approaches to reinforcement learning to place

our results in the context of alternative methods. In our comparisons against human

performance and alternative methods, we compare the performance of the agents trained

using AE-NEAT against the reported scores from the respective papers. There are

several factors that prohibit more in-depth comparison, including statistical testing,

against these benchmarks.

First, is the time taken to train both our agents and the other methods, given our

limited compute resources. For our experiments, we performed three evolutionary runs

per game, for a total of 200 generations. Depending on the game (which influences

the episode length time), these runs typically took between eight to ten hours each to

complete, distributed over our make-shift compute cluster using the undergraduate lab

machines. This length of time limited the number of runs that could be performed for

each game. For the other methods, our comparisons are limited due to our inability

to train agents for ourselves due to time requirements for training these methods, the

lack of implementations, or differences in the input spaces, discussed in the following

paragraph. For instance, the results for Deep GA (Such et al., 2017) and OpenAI

ES (Salimans et al., 2017) were obtained using clusters of 720 cores, and 1,440 cores

respectively2.

Second, one should note that the reported results for each of Deep GA, OpenAI ES, and

HyperNEAT are collected using different input spaces. OpenAI ES and Deep GA use

frame-stacked, greyscale, downsampled 84 × 84 pixel images that is commonly used for

gradient-based approaches, and HyperNEAT uses downsampled 16 × 21 pixel images

and the reduced SECAM (eight colour palette). The experiments performed by OpenAI

ES and Deep GA used frame-stacked images, because they were evolving the weights

of feed-forward networks that required frames from previous time steps to alleviate the

partially observable Markov decision process (POMDP) nature of many games. Despite

the use of four frames stacked together, the input space used for these methods was

still smaller than ours (28,224 dimensions vs. 33,600 dimensions). The input space for

HyperNEAT was substantially smaller than both, at 336 dimensions. Our work uses full-

size images from the environments (160 × 210 pixels) to limit pre-processing performed

2Deep GA was also evaluated using “modern” desktop, with 48 CPU cores and 4 GPUs.
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for the agents. We also use the AtariARI for policy learning and state representation

learning methods. The AtariARI only supports full-size images.

A lack of suitable implementations3 of the methods used in our comparisons and limited

compute resources (a common issue in reinforcement learning research) compounded to

make it infeasible for a fair statistical comparison between the methods. However, once

again, our main contribution is to show that the method presented is capable of training

general video game playing agents, not that our method performs significantly better

than these with respect to overall performance, training time, or some other performance

measure.

7.2 Results

This section presents the results of the AE-NEAT hybrid learning experiments. First, we

examine the overall performance of the trained agents. We compare their performance

on each game against human, random agent, and state-of-the-art baselines. We also

compare the performance against other evolutionary reinforcement learning methods

that also learn from raw pixels. Following this, we investigate reasons for the differences

in performance between games.

7.2.1 Agent Performance

Fig. 7.1 compares the human-normalised performance of the agents for each game.

0% represents the minimum possible score obtainable the game, while 100% represents

average expert human performance (as reported by Mnih et al. (2015)). As shown, the

best performing agent, relative to human performance is discovered for Bowling, followed

by Boxing and Video Pinball. The agents for Bowling, Boxing, and Video Pinball all

exceed expert human performance, achieving 131.4%, 116.4%, and 109.4% of the expert

human scores on average respectively. Additionally, the best agent for Freeway achieves

87.1% of the expert human score on average. The results for these games, and the

remaining games, are similar to the performance observed evolving agents using the

AtariARI inputs (§6.2.1). The biggest difference between the two types of agents was

3Implementations that were (a) available, and (b) able to be modified (within our time constraints)
to make them deployable on our custom compute cluster.
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Figure 7.1: The human-normalised performance of the best hybrid learning agent for
each game.

for Video Pinball. Whereas previously, the best performing Video Pinball agent using the

AtariARI achieved on average only 39.7% of the average expert human score, the best

AE-NEAT agent surpassed average expert human performance, achieving on average

109.4% of the average expert human score.

Table 7.2 compares the performance of the AE-NEAT agents against other neuroevolu-

tion methods that also learn from raw pixels. The left-hand side of the table lists the

average scores achieved by random agents, an expert human player, and Agent57 agents

(the current state-of-the-art general Atari game playing method) to provide context

around the scores of the neuroevolution methods. The right-hand side of the table lists

the average scores achieved by our AE-NEAT agents, and for comparison, the average

scores reported for competing neuroevolution methods where available. For the random

and AE-NEAT agents we also report one standard deviation in the scores to indicate

the variability. The results for Agent57 are the only others to do this. As is shown, the

best AE-NEAT agent outperforms the other neuroevolution agents in three of the 14

games: Asteroids, Bowling, and Ms Pacman. OpenAI ES posts the best scores among

evolutionary methods in seven games, Deep GA in one game, and HyperNEAT in three

games. An interesting observation is all of the ERL methods and the expert human

performed worse than or similarly to the random agent in Video Pinball. Possible ex-

planations for this were discussed in §6.3.4. While AE-NEAT proves to be a competitive
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Table 7.2: Scores for our hybrid learning method (AE-NEAT), compared against other
evolutionary methods that learn from raw pixel inputs, a random agent, expert human
performance, and Agent57 (the current state-of-the-art general Atari game playing

agent).

Game Random Human 1 Agent57 2 AE-NEAT OpenAI ES 3 Deep GA 4 HyperNEAT 5

Asteroids 1013.7 (439.0) 13157.0 150854.6 (16116.7) 1739.0 (596.1) 1562.0 1661.0 1694.0
Berzerk 162.0 (118.1) 2237.5 61507.8 (26539.5) 855.7 (233.5) 686.0 1394.0
Bowling 24.3 (5.3) 154.8 251.2 (13.22) 203.4 (17.7) 30.0 135.8
Boxing 0.2 (4.4) 4.3 100.0 (0.0) 21.4 (12.2) 49.8 16.4
Breakout 1.5 (1.3) 31.8 790.4 (60.0) 3.8 (4.7) 9.5 2.8
Demon Attack 185.6 (139.2) 3401.0 143161.44 (220.3) 981.4 (541.5) 1166.5 3590.0
Freeway 0.0 (0.0) 29.6 32.59 (0.7) 25.8 (1.7) 31.0 29.0
Frostbite 76.0 (40.7) 4335.0 541280.9 (17485.8) 2546.5 (514.8) 370.0 4536.0 2260.0
Ms Pacman 220.3 (169.5) 15693.0 63994.4 (6652.2) 3761.1 (1580.3) 3408.0
Pong -20.3 (0.9) 18.9 20.7 (0.5) -8.7 (13.9) 21.0 -17.4
Seaquest 88.8 (64.3) 20182.0 999997.6 (1.4) 630.2 (126.8) 1390.0 798.0 716.0
Space Invaders 157.4 (101.0) 1652.0 48680.9 (5894.0) 729.9 (189.3) 678.5 1251.0
Tennis -23.9 (0.3) -8.9 23.8 (0.1) -19.3 (3.4) 4.5 0.0
Video Pinball 22768.1 (14386.9) 17298.0 992340.7 (12867.9) 18927.6 (13978.2) 22834.8 0.0

1 Mnih et al. (2015) 2 Badia et al. (2020) 3 Salimans et al. (2017) 4 Such et al. (2017) 5 Hausknecht et al. (2014)

alternative to other evolutionary methods, all tend to fall some way behind the scores

reported for Agent57, the current state-of-the-art, indicating that much progress is still

to be made for evolutionary methods to be competitive with the best policy gradient

methods.

7.2.2 Fitness over Time

The fitness curves for each game in Fig. 7.2 show the progress of the policy network

populations over time for the run that produces the top performing agent. Each plot

displays the maximum fitness, average population fitness, and one standard deviation

around the average population fitness. Where appropriate, the threshold of expert

human performance is also displayed. Examining the fitness curves for the Bowling,

Boxing, and Video Pinball agents that surpass expert human performance, we see that

they all do so quite quickly. Agents that exceed human performance over an average

of three episodes are first in Generation 47 for Bowling, Generation 2 for Boxing, and

Generation 15 for Video Pinball. While the agents for Freeway never surpass expert

human performance, we see that even in the initial population a solution with a fitness

of 23.6 points is found, which equates to 86.5% of the expert human score. A particularly

interesting result is that the top two performing Pong agents, found in generations 53

and 57, both exceed expert human performance over three episodes. The sudden and

extreme jump in maximum fitness around Generation 40, and the consistent maximum

fitness of zero points (a draw) shortly after, indicate that these scores are outliers and
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the population became stuck in a local optimum. The evolved policies that produce

such wildly fluctuating and then consistent scores are explored in §7.2.4.

Across all the games, the trends in performance for the runs can be separated into

four categories: little/no improvement over time, improvement followed by stagnation,

an uptick in fitness towards the generation limit, and consistent improvement. For

most of the games, we observe that performance tends to improve over time before

stagnating. This suggests that the populations reach local optima that are difficult

to escape. However, for Frostbite, Ms Pacman, and Space Invaders, the fitness begins

trending upwards again towards the end of the runs. This indicates that better solutions

might be found if the runs were allowed to continue for longer. Similarly, the runs for

Boxing and Video Pinball show consistent improvement over time, again indicating that

better solutions might be found had the generation limit been higher. The runs for

Breakout and Demon Attack, whose agents perform among the worst relative to human

performance, there appears to be little to no improvement over time. This indicates that

it is difficult to escape the local optimum surrounding the initial conditions. Both the

performance of the autoencoders and the choice of hyperparameters may contribute to

these trends. The remainder of this section focuses on investigating possible explanations

for the differences in performance between games.

7.2.3 Compressor Performance

We begin our investigations into the reasons for the differences in performance between

games by examining the quality of the compressors trained during the best training

runs for each game. Although we report the results for only the run that produces the

best agents for each game, the quality of the final compressors is similar across all three

runs for each game. Table 7.3 shows the localisation and classification results of the final

compressors for the best run for each game. There are some notable differences compared

to the compressors of the same design trained independently using the observations

collected by a trained PPO agent (§5.5.2).

In the majority of cases (39 of the 53) the scores for the performance of the compressors

from the final agents across each state variable category were comparable, within 0.05 of

the reported average R2 and F1 values, to the performance reported in the independent

evaluations (§5.5.2). In four cases, the compressors learnt better than the independently
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Figure 7.2: The fitness curves of the population for the best run of each game.

trained compressors. For learning the score and clock variables for Boxing, the online

trained compressor had a higher average F1 score (0.45 compared to 0.31). In Breakout,

the online trained compressor had a higher average R2 value for agent localisation (0.56

compared to 0.40). For Berzerk, the online trained compressor had a higher average R2

value for small object localisation (0.17 vs. 0.11). Finally, for Tennis, the online trained
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Table 7.3: The localisation and classification performance in each category for the
final compressors of the best run for each game.

Localisation (Avg. R2) Classification (Avg. F1)
Game Small Object Agent Other Score/Clock/Lives Misc.

Asteroids 0.00 0.00 0.18 0.56 0.32
Berzerk 0.17 0.70 0.52 0.76 0.51
Bowling 0.59 0.93 0.86 0.97
Boxing 0.58 0.67 0.45
Breakout 0.05 0.56 0.58 0.65
Demon Attack 0.02 -0.02 0.06 0.98 0.60
Freeway 0.39 0.74 0.12
Frostbite 0.60 0.84 0.78 0.51
Ms Pacman 0.21 0.06 0.73 0.30
Pong 0.33 0.67 0.69 0.66
Seaquest 0.32 0.65 0.27 0.82 0.70
Space Invaders 0.00 0.65 0.85 0.45 0.39
Tennis 0.28 0.77 0.80 0.73
Video Pinball 0.00 -0.02 0.11

compressor had a higher average F1 score for classifying the agent and opponent scores

(0.73 compared to 0.64).

Of equal interest are the 16 instances where the online compressors scores were worse

than the equivalent compressors trained during the independent evaluations. For Bowl-

ing (0.59 vs. 0.86) and Pong (0.33 vs. 0.45), the online trained compressors performed

worse in for encoding the locations of the ball, captured in the small object localisa-

tion category. For agent localisation, the online trained compressors performed worse in

Berzerk (0.70 vs. 0.83) and Space Invaders (0.65 vs. 0.92). For other object localisation,

the online compressors performed worse in Demon Attack (0.06 vs. 0.13), Freeway (0.74

vs. 0.95), and Seaquest (0.27 vs. 0.35). Moving on to classification, the online trained

compressors all recorded worse average F1 scores in the score/clock/lives category for

Berzerk (0.76 vs. 0.82), Breakout (0.58 vs. 0.88), Freeway (0.12 vs. 0.22), Pong (0.66

vs. 0.95), Seaquest (0.82 vs. 0.88), and Video Pinball (0.11 vs. 0.23). Finally, for the

miscellaneous category the online trained compressors were worse for Breakout (0.65 vs.

0.83) and Demon Attack (0.60 vs. 0.80).

Fig 7.3 examines the relationship between the quality of the compressor and the quality

of policy for each hybrid agent. The x and y axes measure the overall classification and

regression performance, respectively, of the probes trained using the state representations
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Figure 7.3: An illustration of the relationship between compressor/encoder and policy
performance for the best AE-NEAT agents for each game.

generated by the compressors. The colour of each point indicates the average human-

normalised performance of the particular agent. Although we know from our policy

learning experiments using the AtariARI that having good information alone is not

sufficient for finding a good policy (§6.2.1), Fig. 7.3 is still useful for investigating the

results. For example, it illustrates that for Freeway and Video Pinball, knowledge about

the score (the only classification state variable in both cases4) are not important for

learning good policies. Additionally, it shows that knowledge about the positions of the

ball and bumpers are not important for human-beating performance in Video Pinball.

For Video Pinball, this is unsurprising as even a random strategy is able to beat a human

strategy on average. Fig. 7.3 also highlights the importance of being able to accurately

localise objects compared to being able to classify other state variables, such as a the

number of lives, score, and the status of objects (e.g. the count of the number of igloo

blocks formed in Frostbite). With the exception of the Video Pinball agent, whose who

high human-normalised performance despite the poor compressor has been explained,

the common factor between the other highest performing agents – for Freeway, Boxing,

Frostbite, and Bowling – all have high localisation performance in common, despite

substantially different classification performance.

4For Video Pinball the score is encoded in two separate bytes of RAM.
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7.2.4 Evolved Polices

As mentioned earlier (§7.2.2), the fitness curve for Pong alludes to some interesting

polices developed by the agents throughout the training run. In particular, the best

agent, which is found in Generation 53, achieves a maximum possible score of 21 points

across all three episodes during the fitness evaluation, but shortly after the population

converged on a strategy that consistently yielded an average score of zero points from

Generation 68. Roll-outs of the agent confirm that the best agent exploits the loophole

in the game first observed for one of the runs of the AtariARI policy learning experi-

ments (§6.2.3), learning to move to a position that guarantees it is able to always beat

the opponent for a particular starting trajectory. However, unlike that run, the popula-

tion does not converge on this local optimum once discovered. Instead, the population

converged on a different strategy the consistently results in a draw. For this strategy,

the agents discovered a position where the ball is infinitely bounced between the agent

and the opponent, resulting in neither scoring a point before the frame cap is reached.

This behaviour is similar to the agent refusing to serve the ball in Tennis. However, this

strategy is not always successful, due to the stochasiticity introduced into the agents

actions. The population is unable to move on from this local optima, as developing

policies that we know to be more popular in the long run, such as those that track the

ball and/or the opponent perform much poorer at this early stage of development.

7.2.5 Evolved Architectures

Compared to the policy learning experiments conducted using the AtariARI, it is more

difficult to interpret the evolved policy networks of the hybrid agents. Aside from the

fact that the policy networks of the hybrid agents are much larger (due to the 40 inputs

from the compressors), due to the nature of the representation learned by the autoen-

coders, we do not know which dimensions encode information pertinent to different

state variables (e.g. object positions, scores, etc.). Therefore, evidence of the structures

required for combating partial observability is harder to find. Table 7.4 summarises

some of the characteristics of the evolved policy networks for the best AE-NEAT agents.

Understandably, the solutions discovered later in the evolutionary runs include more

hidden nodes than those found earlier. This is because solutions start out minimally

(with only input, bias and output nodes) and evolve hidden nodes over time. A prime
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example of this are the best solutions for Breakout and Video Pinball. The best solution

for Breakout was discovered during the 5th generation and contains only a single hidden

node, whereas the best solution for Video Pinball was found during the 200th generation

and contains 25 hidden nodes. Solutions found early on in the evolutionary process tend

to have evolved fewer hidden nodes than solutions found later.

There are two reasons that solutions are found early on. First, good solutions lie close to

the initial conditions and only require simple network architectures to learn good strate-

gies. In this case, additional structural mutations and weight optimisations offer little to

no improvement. An example of such a game is Freeway. As described in §7.2.1, the best

Freeway agent achieves 90% of expert human performance with a very simple network

architecture with only five hidden nodes. Second, better polices lie far from the initial

conditions and many structural mutations are required before a better policy is discov-

ered. This appears to be the case for Breakout, where the best solution is found during

the 5th generation, yet this solution is only able to accrue on average 3.8 points. Very

poor in comparison to the 31.8 points accrued on average by the expert human player.

The poor performance in Breakout is likely a result of the fact that policy networks

need to reach some critical complexity before they are able to utilise their structure

for better performance. Although structural innovations are protected by the NEAT

speciation policy, if these networks perform poorly in comparison to simpler networks

and require many mutations to take advantage of their more complex structure, they

will not be allocated enough offspring to adequately search for more complex structures.

This exploration vs. exploitation trade-off is discussed in the following section (§7.3.3).

7.3 Discussion

Our analysis of the agents produced by our experiments yielded several interesting out-

comes worthy of discussion. In this section we address these points. We delay our

discussion of potential avenues of future work until the next chapter.

7.3.1 Minimum Policy Network Complexity

One of the observations from our results is that for some of the poorest performing

games, such as Breakout and Demon Attack, there is a lack of improvement in fitness
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Table 7.4: The generation discovered, and the number of (used) hidden nodes and
connections for the policy networks of the best AE-NEAT agents for each game.

Game Generation Hidden Nodes Connections

Asteroids 175 23 620
Berzerk 139 21 770
Bowling 171 23 270
Boxing 170 19 756
Breakout 5 1 166
Demon Attack 117 10 257
Freeway 39 5 131
Frostbite 193 32 801
Ms Pacman 113 16 398
Pong 53 3 244
Seaquest 116 9 749
Space Invaders 193 19 273
Tennis 184 32 781
Video Pinball 199 25 411

from the outset. This suggests that the initial conditions, i.e. minimal networks without

any hidden nodes, lie in a flat region of the policy space, far from any architecture that

is able to yield better fitness. In other words, many mutations are required before the

positive effects of successful mutations are realised by rewards of higher fitness. This

make the incremental process of evolving increasingly better policy networks extremely

difficult, as all individuals in the population are awarded similar fitnesses. This means

that the search for weights and topologies is essentially random and unguided. One way

to address this is to increase the strength and frequency of structural mutations, however,

make these too strong and not only is it likely that for other games the mutations will

be too powerful to enable the progress observed searching those policy spaces, but when

better solutions are found, they will be very slowly refined as the strength of mutations

will frequently overshoot them. The severity of this problem is unique to neuroevolution

methods that evolve both weights and topologies, compared to those that evolve or

optimise through gradient descent the weights of fix topology networks that are often

designed on the safe side with more capacity than is needed. One potential solution that

might be worthy of investigation is seeding the initial populations with different starter

architectures to help overcome the initial conditions, while ensuring that the mutations

are not too powerful to prevent learning. Alternatively, the strength of mutations could

be modified and reduced or increased throughout evolution depending on the progress

of the population. NEAT already includes a mechanism to replace weights, but rarely
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applying strong structural mutations could also be of benefit.

7.3.2 Compressor Performance

One potential explanation for the difference in performance between the compressors

trained offline using the data collected by trained Proximal Policy Optimisation (PPO)

agents, and the compressors trained online using the data collected during the training of

the NEAT agents is the difference in gameplay performance between these two types of

agents. The training, validation, and test data that was collected for training the probes,

was generated using the data collected for PPO agents, and may not be representative of

the game states encountered by the hybrid agents. This difference between the data used

for training the compressors may bias the results. For example, in Breakout, the PPO

agent was able to learn a very good policy for playing the game that far exceeded expert

human performance. As result the observations collected by this agent have higher scores

and more of the bricks destroyed. This is likely the cause of the lower classification

scores achieved by the online trained compressor, that was never given the opportunity

to train on these game states. This explanation seems to hold, as the object localisation

performance is similar between the two models, and the agent localisation performance

is in fact much higher for the online trained compressor. However, this argument also

holds for Pong and Video Pinball, where the PPO agents produced much higher scores

than the AE-NEAT agents, but does not hold for Demon Attack, or Boxing, where

the compressors from the AE-NEAT agents performed similarly and outperformed the

compressors trained on PPO collected observations, despite the PPO agents receiving

vastly higher scores.

Compressor performance is clearly a limiting factor in the performance of some of the

AE-NEAT agents, particularly in the cases where the ability of the compressors to encode

positional information of different objects. This is one area of improvement discussed in

Chapter 8.

7.3.3 Balancing Exploration and Exploitation

The evolved solutions for some games attest to the fact that evolutionary algorithms

are not immune to becoming stuck in local optima. This was a phenomena we observed
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in both the policy learning using the AtariARI, and with AE-NEAT. The most obvious

examples are the loopholes exploited by the evolved solutions for Tennis A in our Atari-

ARI experiments, and Pong in both the AtariARI and AE-NEAT experiments. In these

cases, the local optima are particularly problematic because they are discovered early,

before the agents are able to develop what we know to be more promising strategies,

such as tracking the ball or opponent. Despite speciation, in the short term, alternative

strategies are not rewarded highly enough to be preserved; highlighting the need for a

better balance between exploration and exploitation. It is possible that including ele-

ments of novelty search or intrinsic motivation may help to achieve this balance. It is

unclear how other researchers avoided the loopholes introduced by the frame cap, though

we suspect that they took a similar approach to us. The reported score of zero points

for the HyperNEAT agent reported by Hausknecht et al. (2014) leads us to believe that

this loophole may have gone unnoticed.

7.4 Summary

In this chapter, we performed experiments to evaluate our hybrid learning method, AE-

NEAT, which was detailed in Chapter 4. This was after having evaluated the state

representation and policy learning components of our method in isolation, in chapters

5 and 6 respectively. Overall, we found that through the separation of state representa-

tion and policy learning, we were indeed able to scale NEAT, a neuroevolution method

that evolves both the weights and topology of neural networks to video game domains

with high-dimensional, raw pixel inputs. Furthermore, we found agents that were able

to outperform alternative neuroevolution methods on several games, proving that our

proposed approach is worth further investigation in the future. Despite this, both our

method and other neuroevolution methods lag far behind the state-of-the-art gradient-

based deep reinforcement learning general Atari game playing method. In the following

chapter, we round up the contributions we have made throughout our experimental

process to reach this point, and propose avenues of future work for closing the gap on

gradient-based deep reinforcement learning methods.



Chapter 8

Conclusions

This research aimed to investigate the plausibility of using a separated state representa-

tion and policy learning method to scale topology and weight evolving neuroevolution

to vision-based general video game playing (GVGP). In the following sections, we dis-

cuss the contributions, implications, and limitations of our research, before presenting

avenues for future work.

8.1 Contributions

In this section, we summarise the contributions of our work. We begin by discussing

the most significant contribution related to the main research aim, before discussing

secondary contributions that we have also made.

8.1.1 Scaling Topology and Weight Evolving Neuroevolution to Vision-

Based GVGP

The main contribution of this research was showing that, through the separation of

state representation and policy learning, topology and weight evolving neuroevolution

methods can be used to train vision-based GVGP agents. We proposed a method,

Autoencoder-Augmented NEAT (AE-NEAT), that we showed was able to train agents

that exceeded expert human performance in a number of Atari games, and performed
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competitively against the reported results of other state-of-the-art evolutionary rein-

forcement learning (ERL) methods.

As discussed in our review of the literature (Chapter 3), prior work had shown that

NEAT, was unable to learn policies from raw pixels (Hausknecht et al., 2014) and had

only been shown to be successful at evolving policies for a single vision-based aim-and-

shoot task when combined with a compression network that was trained in a supervised

manner before evolving policies. Our method, AE-NEAT, combines NEAT with a com-

pression network that is trained in an unsupervised manner simultaneously alongside the

policy networks. This removes the need for pre-training and labelled data, enhancing

the general applicability to different tasks and domains.

Our findings are significant for two reasons. First and foremost, our method opens up

the ability to harness additional benefits of ERL that motivated our research and were

discussed in Chapter 1. These benefits include greater exploration of the policy space,

and the ability to learn given only sparse rewards. Second, vision-based GVGP bench-

marks, such as the Atari games used in our experiments, are commonly used to assess

the ability of algorithms to find solutions to complex reinforcement learning problems

with high-dimensional inputs. Success on this benchmark provides an indication that

AE-NEAT may be useful for solving tasks with similar properties.

8.1.2 Deeper Insights into the Quality of Representations Learned by

Autoencoders

In Chapter 5, we investigated promising autoencoder-based representation learning method

to use for training compressor networks. We compared not only the quality of repre-

sentations learned by different types of autoencoders (undercomplete, variational, and

disentangled variational), but also the effect of representation size on the quality of rep-

resentations. Our results provide insight into the relationship between different types of

models, representation quality (from a policy learning perspective) and representation

size.

We also provide the most comprehensive evaluation to date on the use of weighted recon-

struction errors for focusing the representations learned by autoencoders on important

features for reinforcement learning. Prior to our work, work by Nylend (2017) indicated
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that the use of weighted reconstruction errors could improve the quality of the repre-

sentations learned by autoencoders (from a policy learning perspective) by focusing the

reconstruction on dynamic portions of the images. However, the only evidence to sup-

port this was that the quality of the reconstructions improved, in particular the presence

of small objects in the reconstructions. However, in our analysis, we investigated the

impact of using weighted reconstruction error on different types of autoencoders and for

different representation sizes. Our method for evaluating the impact of weighted recon-

struction errors was more sophisticated and showed that despite visible improvements

in the reconstructions, the use of a weighted reconstruction error measure only led to

improvements under certain conditions.

8.1.3 A New Method for Evaluating Learned State Representations

using the AtariARI

In our work, we extended the representation evaluation method proposed by Anand

et al. (2019) alongside the release of the AtariARI, introducing non-linear, and regression

probes to enhance evaluations. These probes reveal insights into the quality of learned

state representations that could not have been detected previously. Our method incor-

porates regression evaluations for appropriate variables, and uses a normalised metric

to retain the ability to compare performance between state variables. It also main-

tains conformance with the existing categorisations of variables defined by Anand et al.

(2019). Using our method, the performance of each model can be summarised down to

two values, the overall localisation and classification performance. Previously, models

were summarised by a single overall classification performance value, however, separating

categorical and discrete variables allows for a better and more interpretable evaluation

of these respective categories. We have open-sourced this extended evaluation method

(github.com/adamtupper/atari-representation-learning) so that it can be used by other

researchers.

8.1.4 PyNEAT: A New Implementation of NEAT in Python

The existing implementation of NEAT written in Python (McIntyre et al., 2017) is

substantially different from the original implementation of NEAT by Stanley and Mi-

ikkulainen (2002). For our research, we developed our own implementation of NEAT,

https://github.com/adamtupper/atari-representation-learning
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PyNEAT, that we experimentally verified to ensure its effectiveness. This is, to the

best of our knowledge, the closest available implementation of NEAT in Python to

the original implementation. Having an original implementation of NEAT in Python

is useful for incorporating NEAT into existing methodologies and pipelines with other

machine learning libraries that are also available for Python (e.g. PyTorch, Tensor-

Flow, and Scikit-learn) and also for performing benchmarking and comparisons. NEAT

is renowned as a complex and challenging algorithm to implement, and so we have

also open sourced PyNEAT for the benefit of other researchers and practitioners here:

github.com/adamtupper/pyneat.

8.1.5 The Simplicity of Solutions for Complex RL Problems

Our policy learning experiments using the representations provided by the AtariARI

(Chapter 6) and learned state representations (Chapter 7) demonstrated the simplicity

of high performing solutions that exist for some Atari games, given compact state rep-

resentations. As far as we are aware, this is the first work to discuss and present the

evolved architectures for the solutions to games. These architectures shed more light on

the complexity of different games and the complexity of solutions required to solve them.

This is an important benefit of evolving solutions from minimal structures. Outside of

this work, discussions on the complexity of games are centred around the complexity of

different algorithms that are able to find solutions. Our results provide insight along a

different axis, the complexity of the networks required to solve them.

8.2 Limitations

The gap between ERL and gradient-based RL methods While our method

performs well when compared with other ERL methods, both fall short of the current

state-of-the-art deep RL methods. The best deep RL GVGP method, Agent57 (Badia

et al., 2020), is able to train agents that surpass expert human perform in all Atari

games. Despite this, our method adds to the toolbox of methods that can be used to

solve RL problems, and might serve as a base upon which further improvement can be

made to eventually challenge deep RL methods. We discuss avenues for closing this gap

and further improving our method in §8.3.

https://github.com/adamtupper/pyneat


Conclusions 128

Testing on a wider selection of games We conducted our experiments using Atari

games as the benchmark for evaluating and comparing our results. While this benchmark

is widely used, it does not guarantee that our method will generalise to other video game

domains or other domains with high-dimensional input spaces. However, in contrast to

nearly all other RL methods, evolutionary or otherwise, in our experiments we performed

minimal preprocessing on the images fed to the agents (only grey scale conversions). This

lack of reliance on the properties of the images from Atari domain gives confidence that

our method might generalise well to other domains.

Proof of concept We believe that our methodology was effective in demonstrating

that our method is able to train vision-based GVGP agents, however, our results repre-

sent a proof of concept that this approach can work and holds promise. The significant

time and resource constraints prohibited us from performing large number of runs in

our evaluations and from conducting extensive hyperparameter tuning. As a result, our

results do not represent the limit of the performance that can be achieved using this

method, and instead serve as a proof of concept that this approach can work, even if

only shown to do so for a small selection of games.

8.3 Future Work

We conclude this thesis by briefly discussing several potential avenues for future research.

The modular nature of the compressor-controller agent design, and our proposed method

for training these components, offers ample flexibility for integrating improvements.

Furthermore, the independent evaluations of each component conducted in chapters

5 and 6 help guide our recommendations for the areas where future effort should be

invested.

8.3.1 State Representation Learning (Compressor) Improvements

We used an autoencoder for training the compressor networks for our agents. However,

the modularity of the compressor-controller agent design and the flexibility of our pro-

posed training method allows for any unsupervised representation learning method to be

substituted in the autoencoders place. For example, the SpatioTemporal DeepInfoMax
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(ST-DIM) method proposed by Anand et al. (2019). Furthermore, our results showed

clear inconsistencies in the ability of the different autoencoder-based compression meth-

ods we tested to extract and encode important features required for policy learning, both

between and within games (§5.5.2). Future research is needed to investigate alternative

methods for state representation learning, that might learn representations better suited

for policy learning, yet maintain the ability to learn in an unsupervised manner.

8.3.2 Policy Learning (Controller) Improvements

NEAT (Stanley and Miikkulainen, 2002) is a powerful topology and weight evolving

neuroevolution algorithm that is widely used. However, a number of extensions have

been proposed (Nodine, 2010, Stanley et al., 2009, Whiteson et al., 2005) that could

be assessed in future work, to see if they yield improved performance. An alternative

avenue of investigation is whether or not policy learning can be improved through the

inclusion of some form of neuromodulation.

In biological brains, the properties of neurons and the synapses (connections) between

them can be altered by other neurons, or chemicals released by other neurons, through

a process called neuromodulation (Katz and Calin-Jageman, 2009). Neuromodulatory

actions can cause temporary excitation or inhibition, and can also cause lasting changes

in the excitability of neurons and the strength of synapses (Katz and Calin-Jageman,

2009). This process allows for localised learning.

Modulatory neurons, proposed by Soltoggio et al. (2008), aim to emulate the process of

neuromodulation in artificial neural networks by altering the learning rate of the network

at the connection level. This localised regulation of plasticity allows for the selective

activation of learning in specific parts of the network in response to different inputs. In

reinforcement learning, this corresponds to allowing selective learning in specific parts

of the network in response to specific changes in the environment (Ellefsen et al., 2015).

For simple reinforcement learning tasks, such as maze navigation (Soltoggio et al., 2008)

and decision making (Ellefsen et al., 2015), in changing environments, the use of modula-

tory neurons has successfully mitigated catastrophic forgetting and enabled the evolution

of agents that are robust to changes in the environment and reward. The inclusion of

modulatory neurons in the controller could improve performance in games where the



Conclusions 130

environment changes over time, such as those with different levels or those in which the

entire environment is not visible to the agent at once (e.g. Berzerk).

8.3.3 Alternative Sampling Methods for Selecting the Observations

used to Train the Compressor

How the observations used to train the compressor are selected is important because this

is the mechanism through which the controllers influence the features that are learned.

We used random sampling in our experiments to ensure that (a) agents with different

strategies contributed to the training set, and (b) observations from throughout the

evaluation episodes were included. However, further investigation is required to see

whether or not more sophisticated sampling methods could be used to reduce training

times or produce higher performing agents. For instance, Alvernaz and Togelius (2017)

used a reconstruction error threshold to select the observations that were included in

the training set, but it is not known whether the extra computation (reconstructing

each image and calculating the reconstruction error) at each time step during the fitness

evaluations is worthwhile.

8.3.4 Multi-Task Learning

A natural extension of GVGP is to train agents that can learn and remember how to

play multiple games. A final avenue of future work is to investigate how our method

can be extended to achieve this goal. This is worthy of exploration because there are

several benefits offered by topology and weight evolving neuroevolution algorithms that

make them particularly well suited for multi-task problems.

First, population-based evolutionary algorithms are inherently suited to multi-task learn-

ing problems because they evolve a population of solutions. This is advantageous because

multi-objective optimisation problems, such as multi-task learning, naturally give rise

to sets of Pareto-optimal solutions (Deb, 2011).

Second, weight and topology evolving neuroevolution algorithms allow us to evolve mod-

ular network architectures that consist of sub-networks that can be reused or perform

specific functions. This has already been shown to improve performance in simple multi-

task learning problems (Ellefsen et al., 2015). The gradient-based deep reinforcement
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learning algorithms that currently dominate GVGP cannot achieve this because they

are unable to optimise modularity.

Finally, the ability to evolve the topology of networks also allows extra capacity to

be added to the networks as required to help learn multiple tasks. Current gradient

descent-based methods resort to very large, highly overparameterised networks to avoid

this issue (Fernando et al., 2017, Rusu et al., 2016), but this approach does not scale

well with the number of tasks.



Appendix A

Additional State Representation

Learning Details

This appendix includes additional details related to the state representation learning

experiments and results presented in Chapter 5.

A.1 Proximal Policy Optimisation (PPO) Agents for Game-

play Image Collection

Figure A.1 displays the training curves for each PPO agent trained for collecting game-

play images. Each agent was trained for 10 million timesteps, using the same hyper-

parameters reported alongside the algorithm in the original paper (Schulman et al.,

2017).
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Figure A.1: Reward over time for each PPO agent on each game.



Appendix B

Additional AtariARI Policy

Learning Details

This appendix includes additional details related to the policy learning experiments and

results presented in Chapter 6.
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B.1 AtariARI Policy Learning Experiments

Table B.1 provides a full list of the hyperparameters used to evolve policy networks using

PyNEAT. These experiments used the state representations provided by the AtariARI

as the input to the networks.

Table B.1: Common hyperparameters for NEAT for each game for the AtariARI
policy learning experiments.

Hyperparameter Value

Generations 200
Population Size 130
Add Node Probability 0.03
Add Connection Probability 0.05
Mutate Weights Probability 0.8
Weight Range [-30, 30]
Weight Perturb Power 0.05
Weight Init Power 3.0
Weight Replace Probability 0.1
Compatibility Distance Disjoint/Excess Gene Coefficient 1.0
Compatibility Distance Weight Difference Coefficient 0.4
Compatibility Distance Threshold 3.0
Normalise Gene Distance False
Species Fitness Function max
Max Stagnation 15
Species Elitism 2
Mutate Only Probability 0.25
Average Crossover Probability 0.4
Crossover Only Probability 0.2
Inter-Species Crossover Probability 0.001
Number of Elites 1
Elitism Threshold 5
Survival Threshold 0.2
Gene Disable Probability 0.75
Initial Connection Probability 1.0
Feed-Forward False
Activation Function Sigmoid
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B.2 Evolved AtariARI Agent Architectures

The following figures show the evolved architecture for the best AtariARI agents for each

game. The width of the connections is proportional to the magnitude of the connection

weight. On the left-hand side are the inputs to the network (the state variables provided

by the the AtariARI) and on the right-hand side are the outputs of the network. Each

output represents a legal action the agent can perform.
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Figure B.1: The evolved network architecture for the top performing Asteroids agent.
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Figure B.2: The evolved network architecture for the top performing Berzerk agent.
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Figure B.3: The evolved network architecture for the top performing Bowling agent.
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Figure B.4: The evolved network architecture for the top performing Boxing agent.
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Figure B.5: The evolved network architecture for the top performing Breakout agent.
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Figure B.6: The evolved network architecture for the top performing Demon Attack
agent.
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Figure B.7: The evolved network architecture for the top performing Freeway agent.
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Figure B.8: The evolved network architecture for the top performing Frostbite agent.
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Figure B.9: The evolved network architecture for the top performing Ms Pacman
agent.
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Figure B.10: The evolved network architecture for the top performing Pong agent.
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Figure B.11: The evolved network architecture for the top performing Seaquest agent.
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Figure B.12: The evolved network architecture for the top performing Space Invaders
agent.
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Figure B.13: The evolved network architecture for the top performing Tennis agent
(using the Tennis B condition).
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Figure B.14: The evolved network architecture for the top performing Video Pinball
agent.



Appendix C

Additional Details Related to the

AE-NEAT Evaluations

This appendix includes additional details related to the AE-NEAT evaluations presented

in Chapter 7.
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C.1 Hyperparameters used for the AE-NEAT Evaluations

Table C.1 lists the full set of hyperparameter values used for the AE-NEAT experiments.

Table C.1: Common hyperparameters for each game for the AE-NEAT experiments.

Hyperparameter Value

NEAT
Generations 200
Population Size 300
Add Node Probability 0.03
Add Connection Probability 0.05
Mutate Weights Probability 0.8
Weight Range [-30, 30]
Weight Perturb Power 0.05
Weight Init Power 3.0
Weight Replace Probability 0.1
Compatibility Distance Disjoint/Excess Gene Coefficient 1.0
Compatibility Distance Weight Difference Coefficient 0.4
Compatibility Distance Threshold 3.0
Normalise Gene Distance False
Species Fitness Function max
Max Stagnation 15
Species Elitism 2
Mutate Only Probability 0.25
Average Crossover Probability 0.4
Crossover Only Probability 0.2
Inter-Species Crossover Probability 0.001
Number of Elites 1
Elitism Threshold 5
Survival Threshold 0.2
Gene Disable Probability 0.75
Initial Connection Probability 1.0
Feed-Forward False
Activation Function Sigmoid

Autoencoder
Learning Rate 5e−4

Optimiser Adam
Training Epochs per Generation 1
Training Sample Size 20,000
Observation Store Size 100,000
Representation Size 40
Architecture Nature
Type Undercomplete
Loss Function Sum of Squared Errors
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